Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via lo...Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions.展开更多
Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming.The present article used new room temperature ...Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming.The present article used new room temperature amphiphilic imidazolium ionic liquids with superior surface activity in the aqueous solutions to convert carbon dioxide gas to superior amphiphilic calcium carbonate nanoparticles.In this respect,tetra-cationic ionic liquids 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate and 2-(4-hexyldimethylamino)phenyl)-1,3-bis(3-hexcyldimethylammnonio)propyl)bromide-1 H-imidazol-3-ium acetate were prepared.Their chemical structures,thermal as well as their carbon dioxide absorption/desorption characteristicswere evaluated.Theywere used as solvent and capping agent to synthesize calcium carbonate nanoparticles with controlled crystalline lattice,sizes,thermal properties and spherical surface morphologies.The prepared calcium carbonate nanoparticles were used as additives for the commercial water based drilling mud to improve their filter lose and rheology.The data confirm that the lower concentrations of 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate achieved lower seawater filter lose and improved viscosities.展开更多
Ultrafine metal nanoparticles are crucial for various applications,such as energy storage,catalysis,electronics,and biomedicine,owing to their high surfaceto-volume ratio and unique electronic properties.However,conve...Ultrafine metal nanoparticles are crucial for various applications,such as energy storage,catalysis,electronics,and biomedicine,owing to their high surfaceto-volume ratio and unique electronic properties.However,conventional nanoparticle synthesis methods often face challenges like irregular shapes and agglomeration,leading to compromised functionality.To address these challenges,this paper introduces a novel,rapid,high-temperature thermal radiation heating for the ultrafast synthesis and dispersion of metal nanoparticles.Utilizing the heating properties of carbon materials,the direct Joule heating generated by them rises to 1800-2000 K within~200 ms,followed by cooling to room temperature at a rate of 2×10^(3)K s^(-1).展开更多
The pollution especially organic dyes pollution of water resources is an urgent issue to be solved.It is crucial to develop highly efficient,low cost and recyclable heterogeneous catalysts for wastewater treatment.In ...The pollution especially organic dyes pollution of water resources is an urgent issue to be solved.It is crucial to develop highly efficient,low cost and recyclable heterogeneous catalysts for wastewater treatment.In this study,a heterogeneous Fenton catalyst loaded with Fe_(3)O_(4)nanoparticles was prepared by one step pyrolysis using natural crop waste corncob as carbon source.The prepared porous carbon catalyst can effectively degrade methyl orange(MO,25 mg·L^(-1))at room temperature,and the degradation rate is 99.7%.In addition to high catalytic degradation activity,the layered porous carbon structure of the catalyst also provides high stability and reusability.The degradation rate can be maintained above 93%after 10 cycles.Furthermore,the prepared catalyst is magnetic,which makes the catalyst easy to recycle in practical applications.In addition,the prepared Fe3O4/RCC catalyst has efficient Fenton degradation activity for bisphenol A(BPA)(96.9%)and antibiotic tetracycline hydrochloride(TC-HCl)(95.5%),which proves that it has universal applicability for the degradation of most organic pollutants.This study provides a feasible and scalable strategy to prepare a heterogeneous Fenton catalyst treating wastewater and high-value utilization of biomass waste.展开更多
Propane dehydrogenation(PDH)is a vital industrial process for producing propene,utilizing primarily Cr-based or Pt-based catalysts.These catalysts often suffer from challenges such as the toxicity of Cr,the high costs...Propane dehydrogenation(PDH)is a vital industrial process for producing propene,utilizing primarily Cr-based or Pt-based catalysts.These catalysts often suffer from challenges such as the toxicity of Cr,the high costs of noble metals like Pt,and deactivation issues due to sintering or coke formation at elevated temperatures.We introduce an exceptional Ru-based catalyst,Ru nanoparticles anchored on a nitrogendoped carbon matrix(Ru@NC),which achieves a propane conversion rate of 32.2%and a propene selectivity of 93.1%at 550°C,with minimal coke deposition and a low deactivation rate of 0.0065 h^(-1).Characterizations using techniques like TEM and XPS,along with carefully-designed controlled experiments,reveal that the notable performance of Ru@NC stems from the modified electronic state of Ru by nitrogen dopant and the microporous nature of the matrix,positioning it as a top contender among state-of-the-art PDH catalysts.展开更多
Enhancing A.bisporus L.culture media with nanomaterials and some biostimulants is important for in improving mushroom productivity quantitatively and qualitatively.Magnetic iron nanoparticles(N-FeO),carbon nanotube(CN...Enhancing A.bisporus L.culture media with nanomaterials and some biostimulants is important for in improving mushroom productivity quantitatively and qualitatively.Magnetic iron nanoparticles(N-FeO),carbon nanotube(CNTs)suspensions,effective microorganisms(EM)bio-fertilisers,and growth stimulants(Atonik)were used individually and in combination to enhance the compost culture media.Quantitative and qualitative traits of the mushroom yield were measured.In a simple oOne-Wway experiment that included 16 treatments—Ssingle agents,two-,three-,and four-way Ccombinations and three replications—,the statistical analysis results of Duncan’'s test showed.Tthat the individual impact of the applied study treatments and their combined synergistic effects resulted in a significant increase in the traits of the number of fruiting bodies,fruiting body rate,yield quantity,mushroom biological efficiency ratio,stem length,stem diameter,head diameter,head thickness,carbohydrates content,protein content,ash,and dry matter.The application of Atonik itself resulted in the highest values of fruiting body number,yield,biological efficiency,and stem length,which were respectively were 128.33 body bags^(-1),2814 g bag-1,37.52%,and 3.03 cm,compared to the control of 32.33 body bags^(-1),749 g bag-1,9.98%,and 1.72 cm.The treatments NFeO+CNT+EM+ATO resulted in a significant increase in the traits of the fruiting body rate,stem length,and carbohydrate content by 32.69 g,3.40 cm,and 16.78%,respectively,compared to the control of 22.97 g,1.72 cm,and 8.16%,respectively.展开更多
The application of silicon in lithium-ion batteries has been impaired by the low conductivity and large volume expansion.Herein,we develop a facile“surface amination”strategy to successfully encapsulate Si nanoparti...The application of silicon in lithium-ion batteries has been impaired by the low conductivity and large volume expansion.Herein,we develop a facile“surface amination”strategy to successfully encapsulate Si nanoparticles within the ZIF-8-derived N-doped carbon matrix.The amino group-containing organosilica serves as the linking agent between Si nanoparticles and Zn2+and facilitates the coating of the ZIF-8 layer on the Si nanoparticles.This in turn induces the construction of N-doped carbon matrix encapsu-lated Si nanoparticles(NH2-Si@C)during the subsequent carbonization.With buffered volume change and increased conductivity,the rationally designed NH2-Si@C demonstrates a high reversible capacity(1494 mAh g^(-1)at 1 A g^(-1))and satisfactory rate performance(1062 mAh g^(-1)at 5 A g^(-1)).展开更多
Correction to:J.Iron Steel Res.Int.https://doi.org/10.1007/s42243-024-01240-3.The original version of this article unfortunately con-tained mistakes.The article title was cut off in xml version,the corrected title is ...Correction to:J.Iron Steel Res.Int.https://doi.org/10.1007/s42243-024-01240-3.The original version of this article unfortunately con-tained mistakes.The article title was cut off in xml version,the corrected title is given below.展开更多
The edible mushroom Agaricus bisporus L.plays a crucial ecological role in nutrient cycling and organic matter decomposition,alongside its increasing importance in the food and nutrition industry.This study explored e...The edible mushroom Agaricus bisporus L.plays a crucial ecological role in nutrient cycling and organic matter decomposition,alongside its increasing importance in the food and nutrition industry.This study explored ecological interventions to enhance the mushroom’s vitamin content by enriching its cultivation substrate with nanomaterials and biostimulatory agents.The experiment was conducted within the mushroom production project at Al-Qadisiyah Governorate,Iraq.The compost-based medium was amended with magnetic iron nanoparticles(N-FeO),carbon nanotube(CNT)suspensions,EM biofertilizer,and Atonik growth stimulant.Their ecological impact on the enrichment of fat-soluble(A,D,E)and water-soluble(B2,B3,B5,B6)vitamins in mushrooms was assessed.The study employed a Completely Randomized Design(CRD)with three replicates.Results revealed that the synergistic application of these eco-friendly treatments significantly enhanced the vitamin profiles of A.bisporus.The highest concentrations of vitamins B2 and B5(5.16 and 17.70 mg kg^(-1),respectively)and vitamin A(6.87 IU ml^(-1))were recorded under the combined quadruple treatment.Additionally,the triple treatment(N-FeO+EM+Atonik)notably increased levels of vitamins B2(4.47 mg kg^(-1)),B6(25.66 mg kg^(-1)),D(34.76 mg kg^(-1)),and vitamin A(6.87 IU ml^(-1)).Dual treatments(EM+Atonik)also significantly improved vitamin B2(4.54 mg kg^(-1))and vitamin E(3.30 mg kg^(-1))contents.These findings demonstrate that integrating nanomaterials and biostimulants can serve as an ecological strategy to improve the nutritional quality of mushrooms while promoting sustainable agricultural practices.展开更多
A flexible air electrode with excellent activity and stability is essential for flexible zinc-air batteries.In this study,we report the rational design of nitrogen-doped carbon nanotube-encapsulated Co9S8 nanopar-ticl...A flexible air electrode with excellent activity and stability is essential for flexible zinc-air batteries.In this study,we report the rational design of nitrogen-doped carbon nanotube-encapsulated Co9S8 nanopar-ticles on carbon cloth(Co9S8/NCNTs/CC),serving as self-supporting air electrodes for both liquid-state and flexible zinc-air batteries.The Co9S8/NCNTs/CC-1 exhibited a half-wave potential of 0.86 V for oxygen re-duction reaction(ORR)and achieved a current density of 10 mA cm-2 for oxygen evolution reaction(OER)at a voltage of only 1.52 V.The well-constructed nanotube on carbon cloth facilitates mass diffu-sion and electron transfer,while enhancing the mechanical flexibility of the material.Density functional theory(DFT)calculations suggested that the synergistic interaction between Co9S8 and NCNTs effectively enhanced the bifunctional electrocatalytic performance of the material.Liquid-state and flexible zinc-air batteries assembled with Co9S8/NCNTs/CC-1 demonstrated outstanding charge-discharge capabilities and long-term stability.展开更多
Intermetallic Pt-based nanoparticles have displayed excellent activity for the oxygen reduction reaction(ORR)in fuel cells.However,it remains a great challenge to synthesize highly atomically ordered Pt-based nanopart...Intermetallic Pt-based nanoparticles have displayed excellent activity for the oxygen reduction reaction(ORR)in fuel cells.However,it remains a great challenge to synthesize highly atomically ordered Pt-based nanoparticle catalysts because the formation of an atomically ordered structure usually requires high-temperature annealing accompanied by grain sintering.Here we report the direct epitaxial growth of well-aligned,highly atomically ordered Pt3 Fe and PtFe nanoparticles(<5 nm)on single-walled carbon nanotube(SWCNT)bundles films.The long-range periodically symmetric van der Waals(vdW)interac-tions between SWCNT bundles and Pt-Fe nanoparticles play an important role in promoting not only the alignment ordering of inter-nanoparticles but also the atomic ordering of intra-nanoparticles.The ordered Pt_(3)Fe/SWCNT catalyst showed enhanced ORR catalytic performance of 2.3-fold higher mass activity and 3.1-fold higher specific activity than commercial Pt/C.Moreover,the formation of an interlocked inter-face and strong vdW interaction endow the Pt-Fe/SWCNT catalysts with extreme long-term stability in potential cycling and excellent anti-thermal sintering ability.展开更多
The overuse of antibiotics and antitumor drugs has resulted in more and more extensive pollution of water bodies with organic drugs,causing detrimental ecological effects,which have attracted attention towards effecti...The overuse of antibiotics and antitumor drugs has resulted in more and more extensive pollution of water bodies with organic drugs,causing detrimental ecological effects,which have attracted attention towards effective and sustainable methods for antibiotics and antitumor drug degradation.Here,the hybrid nanomaterial(g-C_(3)N_(4)@Fe/Pd)was synthesized and used to remove a kind of both an antibiotic and antitumor drug named mitoxantrone(MTX)with 92.0%removal efficiency,and the MTX removal capacity is 450 mg/g.After exposing to the hybrid material the MTX aqueous solution changed color from dark blue to lighter progressively,and LC-UV results of residual solutions showthat a newpeak at 3.0min(MTX:13.2min)after removal by g-C_(3)N_(4)@Fe/Pd appears,with the simultaneous detection of intermediate products indicating that g-C_(3)N_(4)@Fe/Pd indeed degrades MTX.Detailed mass spectrometric analysis suggests that the nuclear mass ratio decreased from 445.2(M+1H)to 126.0(M+1H),169.1(M+1H),239.2(M+1H),267.3(M+1H),285.2(M+1H),371.4(M+1H)and 415.2(M+1H),and the maximum proportion(5.63%)substance of all degradation products(126.0(M+1H))is 40-100 times less toxic than MTX.A mechanism for the removal and degradation of mitoxantrone was proposed.Besides,actual water experiments confirmed that the maximum removal capacity of MTX by g-C_(3)N_(4)@Fe/Pd is up to 492.4 mg/g(0.02 g/L,10 ppm).展开更多
The sustainable geotechnical approach for addressing the challenges associated with clayey soils at construction sites involves the modification of these soils’mechanical and chemical characteristics using soil enhan...The sustainable geotechnical approach for addressing the challenges associated with clayey soils at construction sites involves the modification of these soils’mechanical and chemical characteristics using soil enhancement methods.The present study investigates the coupling effect of sandstone slurry waste(SSW)and calcium carbonate nanoparticle(CCN)as potential stabilizers to enhance the characteristics of clayey soil.A comprehensive investigation was conducted using compaction tests,plasticity index(PI)tests,California bearing ratio(CBR)tests,unconfined compressive strength(UCS)tests,and microstructural analyses of clayey soil,SSW and SSW-CCN-treated clay samples containing 5%,10%,15%,20%,25%,30%,and 35%SSW and 0.3%,0.6%,0.9%,1.2%,and 1.5%CCN mixed with clayey soil in different combinations of clay,SSW,and CCN.The findings reveal that incorporating 25%SSW with 0.9%CCN into clay soil results in an increase in the UCS from 132.2 kPa for untreated clayey soil without curing to 263 kPa after a 28-d curing period.Similarly,a rising trend in CBR results is observed up to 25%SSW addition in clay soil and up to 0.9%CCN addition in SSW-clay mixture.Initially,notable enhancements in UCS were attributed to a denser soil structure,followed by the formation of calcium–silicate–hydrate(CSH)gel,which intensified with prolonged curing.Gel patches were detected by scanning electron microscopy(SEM)in addition to particle aggregation.The results obtained from thermogravimetric analysis,Fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)supported the presence of hydration products such as CSH.The experimental study indicates that SSW,in combination with CCN,offers a sustainable alternative to traditional soil stabilizers.展开更多
Various surfactants have been used in upstream petroleum processes like chemical flooding. Ultimately, the performance of these surfactants depends on their ability to reduce the interfacial tension between oil and wa...Various surfactants have been used in upstream petroleum processes like chemical flooding. Ultimately, the performance of these surfactants depends on their ability to reduce the interfacial tension between oil and water. The surfactant concentration in the aqueous solution decreases owing to the loss of the surfactant on the rock surface in the injection process. The main objective of this paper is to inhibit the surfactant loss by means of adding nanoparticles. Sodium dodecyl sulfate and silica nanoparticles were used as ionic surfactant and nanoparticles in our experiments, respectively. AEROSIL~? 816 and AEROSIL~?200 are hydrophobic and hydrophilic nanoparticles. To determine the adsorption loss of the surfactant onto rock samples, a conductivity approach was used. Real carbonate rock samples were used as the solid phase in adsorption experiments. It should be noted that the rock samples were water wet. This paper describes how equilibrium adsorption was investigated by examining adsorption behavior in a system of carbonate sample(solid phase) and surfactant solution(aqueous phase). The initial surfactant and nanoparticle concentrations were 500–5000 and 500–2000 ppm, respectively. The rate of surfactant losses was extremely dependent on the concentration of the surfactant in the system, and the adsorption of the surfactant decreased with an increase in the nanoparticle concentration. Also, the hydrophilic nanoparticles are more effective than the hydrophobic nanoparticles.展开更多
The design of novel catalysts for efficient electroreduction of CO_(2) into valueadded chemicals is a promising approach to alleviate the energy crisis.Herein,we successfully modify the carbon nanotube by a layer of m...The design of novel catalysts for efficient electroreduction of CO_(2) into valueadded chemicals is a promising approach to alleviate the energy crisis.Herein,we successfully modify the carbon nanotube by a layer of mesoporous carbon shell anchored by nickel(Ni)nanoparticles.Ni species effectively enable carbon deposition derived from pyrolysis of surfactant 1-hexadecyl trimethyl ammonium bromide to form a mesoporous carbon shell.At the same time,Ni nanoparticles can be embedded in the mesoporous carbon shell due to the confinement effect.Owing to the dispersive Ni nanoparticles and N-doping active sites of mesoporous carbon,the as-prepared electrocatalyst exhibits exciting catalytic performance for the selective reduction of CO_(2) to carbon monoxide(CO)with a maximum Faradaic efficiency of 98%at a moderate overpotential of−0.81 V(vs.reversible hydrogen electrode)and a high partial current density of 60 mA cm^(−2) in H-cell with an aqueous electrolyte.展开更多
The efficient electrocatalytic nitrate(NO_(3)^(−))reduction to ammonia(NRA)offers a sustainable alternative for both environmental remediation and ammonia synthesis.Developing advanced electrocatalysts with rationally...The efficient electrocatalytic nitrate(NO_(3)^(−))reduction to ammonia(NRA)offers a sustainable alternative for both environmental remediation and ammonia synthesis.Developing advanced electrocatalysts with rationally designed spatial arrangement of active sites and optimizing the synergetic effect among components are crucial for high efficiency and selectivity.Herein,we present Fe/N active sites decorated on porous carbon nanofibers(CNFs)with encapsulated FeCo nanoparticles(FeCo@CNFs-Fe/N)as electrocatalysts for NRA.The FeCo@CNFs-Fe/N catalyst demonstrates exceptional performance,achieving a high ammonia yield of 498.18μmol/(h·g_(cat)).Meanwhile,the enhanced reduction activity,especially the reduction in overpotential by 0.565 V,is 3–10 times higher than that of FeCo-encapsulated and Fe/N-modified CNFs-based catalysts.The enhanced catalytic activity is attributed to the efficient structure design and optimized spatial distribution of active sites,which enhance the electron transfer rate and decrease the reaction energy barrier.Mechanistic studies reveal that the synergetic effect between encapsulated nanoparticles and surface-modified Fe/N sites plays a crucial role in promoting efficient nitrate adsorption and selective ammonia production.These findings highlight the potential of strategically engineered CNF-based composites for nitrate reduction and other advanced electrocatalytic applications.展开更多
Carbon encapsulated Fe nanoparticles were successfully prepared via confined arc plasma method. The composition, morphology, microstructure, specific surface area and particle size of the product were characterized vi...Carbon encapsulated Fe nanoparticles were successfully prepared via confined arc plasma method. The composition, morphology, microstructure, specific surface area and particle size of the product were characterized via X-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectrometry and Brunauer-Emmett-Teller N2 adsorption. The experiment results show that the carbon encapsulated Fe nanoparticles have clear core-shell structure. The core of the particles is body centered cubic Fe, and the shell is disorder carbons. The particles are in spherical or ellipsoidal shapes. The particle size of the nanocapsules ranges from 15 to 40 nm, with the average value of about 30 nm. The particle diameter of the core is 18 nm, the thickness of the shells is 6-8 nm, and the specific surface area is 24 m2/g.展开更多
The fabrication of one-dimensional metal/N-doped carbon materials has shown a promising prospect as efficient electrocata-lysts for oxygen reduction reaction(ORR).Herein,CoNi alloy nanoparticles anchored on N-doped ca...The fabrication of one-dimensional metal/N-doped carbon materials has shown a promising prospect as efficient electrocata-lysts for oxygen reduction reaction(ORR).Herein,CoNi alloy nanoparticles anchored on N-doped carbon nanotubes(CoNi@NCNT)are prepared by a dual-template strategy,using polypyrrole(PPy)tubes and CoNi-based metal-organic framework as the precursors.The as-formed CoNi@NCNT catalyst displays a half-wave potential(0.83 V)as well as good durability under alkaline medium.The excellent electrocatalytic performance is ascribed to a synergistic coupling of hierarchically tubular structure,highly electronic conductivity,and abundantly alloy-type active sites.When the CoNi@NCNT catalyst is applied in zinc-air battery(ZAB),the device displays a stable charge-discharge cycling performance.The present work affords a useful approach to constructing alloy/nitrogen-incorporated carbon-aceous materials as bifunctional electrocatalysts for high-performance ZABs.展开更多
The carbonization process of a sucrose‐RuCl3/SBA‐15composite towards a Ru‐containing ordered mesoporous carbon(Ru‐OMC)catalyst was studied by in situ temperature‐programmed infrared spectroscopy to identify the s...The carbonization process of a sucrose‐RuCl3/SBA‐15composite towards a Ru‐containing ordered mesoporous carbon(Ru‐OMC)catalyst was studied by in situ temperature‐programmed infrared spectroscopy to identify the stabilization role of organic carbon precursors during the formation of highly dispersed Ru nanoparticles.The results show that the formation of metal carbonyl species results in the formation of homogeneously distributed Ru nanoparticles,and the rigid silica support and carbon matrix around the Ru(CO)x complex can significantly avoid the sintering and agglomeration of Ru metal particles during elevated temperature thermal treatment.These results ultimately demonstrate that sucrose plays important roles in the formation of homogeneously distributed Ru nanoparticles in a porous carbon matrix.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Designing Fischer-Tropsch synthesis(FTS)catalysts to selectively produce liquid hydrocarbon fuels is a crucial challenge.Herein,we selectively introduced Co nanoparticles(NPs)into the micropores and mesopores of an or...Designing Fischer-Tropsch synthesis(FTS)catalysts to selectively produce liquid hydrocarbon fuels is a crucial challenge.Herein,we selectively introduced Co nanoparticles(NPs)into the micropores and mesopores of an ordered mesoporous MFI zeolite(OMMZ)through impregnation,which controlled the carbon number distribution in the FTS products by tuning the position of catalytic active sites in differently sized pores.The Co precursors coordinated by acetate with a size of 9.4×4.2×2.5Åand by 2,2'-bipyridine with a size of 9.5×8.7×7.9Å,smaller and larger than the micropores(ca.5.5Å)of MFI,made the Co species incorporated in OMMZ's micropores and mesopores,respectively.The carbon number products synthesized with the Co NPs confined in mesopores were larger than that in micropores.The high jet and diesel selectivities of 66.5%and 65.3%were achieved with Co NPs confined in micropores and mesopores of less acidic Na-type OMMZ,respectively.Gasoline and jet selectivities of 76.7%and 70.8%were achieved with Co NPs confined in micropores and mesopores of H-type OMMZ with Brönsted acid sites,respectively.A series of characterizations revealed that the selective production of diesel and jet fuels was due to the C-C cleavage suppressing of heavier hydrocarbons by the Co NPs located in mesopores.展开更多
基金the National Nature Science Foundation of China for Excellent Young Scientists Fund(32222058)Fundamental Research Foundation of CAF(CAFYBB2022QB001).
文摘Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions.
基金supported by Science,Technology&Innovation Funding Authority(STDF)under grant(No.47062).
文摘Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming.The present article used new room temperature amphiphilic imidazolium ionic liquids with superior surface activity in the aqueous solutions to convert carbon dioxide gas to superior amphiphilic calcium carbonate nanoparticles.In this respect,tetra-cationic ionic liquids 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate and 2-(4-hexyldimethylamino)phenyl)-1,3-bis(3-hexcyldimethylammnonio)propyl)bromide-1 H-imidazol-3-ium acetate were prepared.Their chemical structures,thermal as well as their carbon dioxide absorption/desorption characteristicswere evaluated.Theywere used as solvent and capping agent to synthesize calcium carbonate nanoparticles with controlled crystalline lattice,sizes,thermal properties and spherical surface morphologies.The prepared calcium carbonate nanoparticles were used as additives for the commercial water based drilling mud to improve their filter lose and rheology.The data confirm that the lower concentrations of 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate achieved lower seawater filter lose and improved viscosities.
基金financially supported by the National Natural Science Foundation of China(Nos.22468029,52274408,52204314)the Major Science and Technology Projects in Yunnan Province(No.202402AF080005)+1 种基金Yunnan Fundamental Research Projects(No.202201AW070014)the Program for Innovative Research Team in the University of ministry of Education of China(No.IRT_17R48)
文摘Ultrafine metal nanoparticles are crucial for various applications,such as energy storage,catalysis,electronics,and biomedicine,owing to their high surfaceto-volume ratio and unique electronic properties.However,conventional nanoparticle synthesis methods often face challenges like irregular shapes and agglomeration,leading to compromised functionality.To address these challenges,this paper introduces a novel,rapid,high-temperature thermal radiation heating for the ultrafast synthesis and dispersion of metal nanoparticles.Utilizing the heating properties of carbon materials,the direct Joule heating generated by them rises to 1800-2000 K within~200 ms,followed by cooling to room temperature at a rate of 2×10^(3)K s^(-1).
基金supported by the National Natural Science Foundation of China(51572124)Natural Science Foundation of China Jiangsu Province(BK20230940)+2 种基金the Fundamental Research Funds for the Central Universities(30920130121001)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,China)a project funded by Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘The pollution especially organic dyes pollution of water resources is an urgent issue to be solved.It is crucial to develop highly efficient,low cost and recyclable heterogeneous catalysts for wastewater treatment.In this study,a heterogeneous Fenton catalyst loaded with Fe_(3)O_(4)nanoparticles was prepared by one step pyrolysis using natural crop waste corncob as carbon source.The prepared porous carbon catalyst can effectively degrade methyl orange(MO,25 mg·L^(-1))at room temperature,and the degradation rate is 99.7%.In addition to high catalytic degradation activity,the layered porous carbon structure of the catalyst also provides high stability and reusability.The degradation rate can be maintained above 93%after 10 cycles.Furthermore,the prepared catalyst is magnetic,which makes the catalyst easy to recycle in practical applications.In addition,the prepared Fe3O4/RCC catalyst has efficient Fenton degradation activity for bisphenol A(BPA)(96.9%)and antibiotic tetracycline hydrochloride(TC-HCl)(95.5%),which proves that it has universal applicability for the degradation of most organic pollutants.This study provides a feasible and scalable strategy to prepare a heterogeneous Fenton catalyst treating wastewater and high-value utilization of biomass waste.
基金supported by the National Key Research and Development Project of China(No.2022YFE0113800)the National Natural Science Foundation of China(No.22102013)+2 种基金Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX0945)Venture and Innovation Support Program for Chongqing Overseas Returnees(No.cx2020107)Thousand Talents Program for Distinguished Young Scholars,Postdoctoral Fellowship Program of CPSF(No.GZB20230910)。
文摘Propane dehydrogenation(PDH)is a vital industrial process for producing propene,utilizing primarily Cr-based or Pt-based catalysts.These catalysts often suffer from challenges such as the toxicity of Cr,the high costs of noble metals like Pt,and deactivation issues due to sintering or coke formation at elevated temperatures.We introduce an exceptional Ru-based catalyst,Ru nanoparticles anchored on a nitrogendoped carbon matrix(Ru@NC),which achieves a propane conversion rate of 32.2%and a propene selectivity of 93.1%at 550°C,with minimal coke deposition and a low deactivation rate of 0.0065 h^(-1).Characterizations using techniques like TEM and XPS,along with carefully-designed controlled experiments,reveal that the notable performance of Ru@NC stems from the modified electronic state of Ru by nitrogen dopant and the microporous nature of the matrix,positioning it as a top contender among state-of-the-art PDH catalysts.
文摘Enhancing A.bisporus L.culture media with nanomaterials and some biostimulants is important for in improving mushroom productivity quantitatively and qualitatively.Magnetic iron nanoparticles(N-FeO),carbon nanotube(CNTs)suspensions,effective microorganisms(EM)bio-fertilisers,and growth stimulants(Atonik)were used individually and in combination to enhance the compost culture media.Quantitative and qualitative traits of the mushroom yield were measured.In a simple oOne-Wway experiment that included 16 treatments—Ssingle agents,two-,three-,and four-way Ccombinations and three replications—,the statistical analysis results of Duncan’'s test showed.Tthat the individual impact of the applied study treatments and their combined synergistic effects resulted in a significant increase in the traits of the number of fruiting bodies,fruiting body rate,yield quantity,mushroom biological efficiency ratio,stem length,stem diameter,head diameter,head thickness,carbohydrates content,protein content,ash,and dry matter.The application of Atonik itself resulted in the highest values of fruiting body number,yield,biological efficiency,and stem length,which were respectively were 128.33 body bags^(-1),2814 g bag-1,37.52%,and 3.03 cm,compared to the control of 32.33 body bags^(-1),749 g bag-1,9.98%,and 1.72 cm.The treatments NFeO+CNT+EM+ATO resulted in a significant increase in the traits of the fruiting body rate,stem length,and carbohydrate content by 32.69 g,3.40 cm,and 16.78%,respectively,compared to the control of 22.97 g,1.72 cm,and 8.16%,respectively.
基金supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(No.2021JJLH0069)the Project of Sanya Yazhou Bay Science and Technology City(grant No SCKJ-JYRC-2023-55)the Hainan Provincial Natural Science Foundation of China(No.522CXTD516).
文摘The application of silicon in lithium-ion batteries has been impaired by the low conductivity and large volume expansion.Herein,we develop a facile“surface amination”strategy to successfully encapsulate Si nanoparticles within the ZIF-8-derived N-doped carbon matrix.The amino group-containing organosilica serves as the linking agent between Si nanoparticles and Zn2+and facilitates the coating of the ZIF-8 layer on the Si nanoparticles.This in turn induces the construction of N-doped carbon matrix encapsu-lated Si nanoparticles(NH2-Si@C)during the subsequent carbonization.With buffered volume change and increased conductivity,the rationally designed NH2-Si@C demonstrates a high reversible capacity(1494 mAh g^(-1)at 1 A g^(-1))and satisfactory rate performance(1062 mAh g^(-1)at 5 A g^(-1)).
文摘Correction to:J.Iron Steel Res.Int.https://doi.org/10.1007/s42243-024-01240-3.The original version of this article unfortunately con-tained mistakes.The article title was cut off in xml version,the corrected title is given below.
文摘The edible mushroom Agaricus bisporus L.plays a crucial ecological role in nutrient cycling and organic matter decomposition,alongside its increasing importance in the food and nutrition industry.This study explored ecological interventions to enhance the mushroom’s vitamin content by enriching its cultivation substrate with nanomaterials and biostimulatory agents.The experiment was conducted within the mushroom production project at Al-Qadisiyah Governorate,Iraq.The compost-based medium was amended with magnetic iron nanoparticles(N-FeO),carbon nanotube(CNT)suspensions,EM biofertilizer,and Atonik growth stimulant.Their ecological impact on the enrichment of fat-soluble(A,D,E)and water-soluble(B2,B3,B5,B6)vitamins in mushrooms was assessed.The study employed a Completely Randomized Design(CRD)with three replicates.Results revealed that the synergistic application of these eco-friendly treatments significantly enhanced the vitamin profiles of A.bisporus.The highest concentrations of vitamins B2 and B5(5.16 and 17.70 mg kg^(-1),respectively)and vitamin A(6.87 IU ml^(-1))were recorded under the combined quadruple treatment.Additionally,the triple treatment(N-FeO+EM+Atonik)notably increased levels of vitamins B2(4.47 mg kg^(-1)),B6(25.66 mg kg^(-1)),D(34.76 mg kg^(-1)),and vitamin A(6.87 IU ml^(-1)).Dual treatments(EM+Atonik)also significantly improved vitamin B2(4.54 mg kg^(-1))and vitamin E(3.30 mg kg^(-1))contents.These findings demonstrate that integrating nanomaterials and biostimulants can serve as an ecological strategy to improve the nutritional quality of mushrooms while promoting sustainable agricultural practices.
基金supported by the Natural Sci-ence Foundation of Xinjiang Uygur Autonomous Region(Nos.2022D01E36 and 2022D01E38)the National Natural Science Foun-dation of China(Nos.22369016 and 22065034)the Outstand-ing Doctoral Student Innovation Project of Xinjiang University(No.XJU2024BS055).
文摘A flexible air electrode with excellent activity and stability is essential for flexible zinc-air batteries.In this study,we report the rational design of nitrogen-doped carbon nanotube-encapsulated Co9S8 nanopar-ticles on carbon cloth(Co9S8/NCNTs/CC),serving as self-supporting air electrodes for both liquid-state and flexible zinc-air batteries.The Co9S8/NCNTs/CC-1 exhibited a half-wave potential of 0.86 V for oxygen re-duction reaction(ORR)and achieved a current density of 10 mA cm-2 for oxygen evolution reaction(OER)at a voltage of only 1.52 V.The well-constructed nanotube on carbon cloth facilitates mass diffu-sion and electron transfer,while enhancing the mechanical flexibility of the material.Density functional theory(DFT)calculations suggested that the synergistic interaction between Co9S8 and NCNTs effectively enhanced the bifunctional electrocatalytic performance of the material.Liquid-state and flexible zinc-air batteries assembled with Co9S8/NCNTs/CC-1 demonstrated outstanding charge-discharge capabilities and long-term stability.
基金supported by the National Natural Science Foundation of China(grant Nos.52073290 and 51927803)the Liaoning Province Science and Technology Plan Project(No.2022-MS-011)the Shenyang science and technology plan project(23-407-3-23).
文摘Intermetallic Pt-based nanoparticles have displayed excellent activity for the oxygen reduction reaction(ORR)in fuel cells.However,it remains a great challenge to synthesize highly atomically ordered Pt-based nanoparticle catalysts because the formation of an atomically ordered structure usually requires high-temperature annealing accompanied by grain sintering.Here we report the direct epitaxial growth of well-aligned,highly atomically ordered Pt3 Fe and PtFe nanoparticles(<5 nm)on single-walled carbon nanotube(SWCNT)bundles films.The long-range periodically symmetric van der Waals(vdW)interac-tions between SWCNT bundles and Pt-Fe nanoparticles play an important role in promoting not only the alignment ordering of inter-nanoparticles but also the atomic ordering of intra-nanoparticles.The ordered Pt_(3)Fe/SWCNT catalyst showed enhanced ORR catalytic performance of 2.3-fold higher mass activity and 3.1-fold higher specific activity than commercial Pt/C.Moreover,the formation of an interlocked inter-face and strong vdW interaction endow the Pt-Fe/SWCNT catalysts with extreme long-term stability in potential cycling and excellent anti-thermal sintering ability.
基金Financial support from the National Natural Science Foundation of China (No.22176147)the National Science Fund for Excellent Young Scholars of China (No.21822607)+1 种基金the Fundamental Research Funds for Central Universities (No.22120230295)the State Key Laboratory for Pollution Control is acknowledged.
文摘The overuse of antibiotics and antitumor drugs has resulted in more and more extensive pollution of water bodies with organic drugs,causing detrimental ecological effects,which have attracted attention towards effective and sustainable methods for antibiotics and antitumor drug degradation.Here,the hybrid nanomaterial(g-C_(3)N_(4)@Fe/Pd)was synthesized and used to remove a kind of both an antibiotic and antitumor drug named mitoxantrone(MTX)with 92.0%removal efficiency,and the MTX removal capacity is 450 mg/g.After exposing to the hybrid material the MTX aqueous solution changed color from dark blue to lighter progressively,and LC-UV results of residual solutions showthat a newpeak at 3.0min(MTX:13.2min)after removal by g-C_(3)N_(4)@Fe/Pd appears,with the simultaneous detection of intermediate products indicating that g-C_(3)N_(4)@Fe/Pd indeed degrades MTX.Detailed mass spectrometric analysis suggests that the nuclear mass ratio decreased from 445.2(M+1H)to 126.0(M+1H),169.1(M+1H),239.2(M+1H),267.3(M+1H),285.2(M+1H),371.4(M+1H)and 415.2(M+1H),and the maximum proportion(5.63%)substance of all degradation products(126.0(M+1H))is 40-100 times less toxic than MTX.A mechanism for the removal and degradation of mitoxantrone was proposed.Besides,actual water experiments confirmed that the maximum removal capacity of MTX by g-C_(3)N_(4)@Fe/Pd is up to 492.4 mg/g(0.02 g/L,10 ppm).
文摘The sustainable geotechnical approach for addressing the challenges associated with clayey soils at construction sites involves the modification of these soils’mechanical and chemical characteristics using soil enhancement methods.The present study investigates the coupling effect of sandstone slurry waste(SSW)and calcium carbonate nanoparticle(CCN)as potential stabilizers to enhance the characteristics of clayey soil.A comprehensive investigation was conducted using compaction tests,plasticity index(PI)tests,California bearing ratio(CBR)tests,unconfined compressive strength(UCS)tests,and microstructural analyses of clayey soil,SSW and SSW-CCN-treated clay samples containing 5%,10%,15%,20%,25%,30%,and 35%SSW and 0.3%,0.6%,0.9%,1.2%,and 1.5%CCN mixed with clayey soil in different combinations of clay,SSW,and CCN.The findings reveal that incorporating 25%SSW with 0.9%CCN into clay soil results in an increase in the UCS from 132.2 kPa for untreated clayey soil without curing to 263 kPa after a 28-d curing period.Similarly,a rising trend in CBR results is observed up to 25%SSW addition in clay soil and up to 0.9%CCN addition in SSW-clay mixture.Initially,notable enhancements in UCS were attributed to a denser soil structure,followed by the formation of calcium–silicate–hydrate(CSH)gel,which intensified with prolonged curing.Gel patches were detected by scanning electron microscopy(SEM)in addition to particle aggregation.The results obtained from thermogravimetric analysis,Fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)supported the presence of hydration products such as CSH.The experimental study indicates that SSW,in combination with CCN,offers a sustainable alternative to traditional soil stabilizers.
文摘Various surfactants have been used in upstream petroleum processes like chemical flooding. Ultimately, the performance of these surfactants depends on their ability to reduce the interfacial tension between oil and water. The surfactant concentration in the aqueous solution decreases owing to the loss of the surfactant on the rock surface in the injection process. The main objective of this paper is to inhibit the surfactant loss by means of adding nanoparticles. Sodium dodecyl sulfate and silica nanoparticles were used as ionic surfactant and nanoparticles in our experiments, respectively. AEROSIL~? 816 and AEROSIL~?200 are hydrophobic and hydrophilic nanoparticles. To determine the adsorption loss of the surfactant onto rock samples, a conductivity approach was used. Real carbonate rock samples were used as the solid phase in adsorption experiments. It should be noted that the rock samples were water wet. This paper describes how equilibrium adsorption was investigated by examining adsorption behavior in a system of carbonate sample(solid phase) and surfactant solution(aqueous phase). The initial surfactant and nanoparticle concentrations were 500–5000 and 500–2000 ppm, respectively. The rate of surfactant losses was extremely dependent on the concentration of the surfactant in the system, and the adsorption of the surfactant decreased with an increase in the nanoparticle concentration. Also, the hydrophilic nanoparticles are more effective than the hydrophobic nanoparticles.
基金the Natural Science Foundation of Hebei(B02020208088,H2020206514)S&T Program of Hebei(20544401D,20314401D,206Z4406G,21314402D,B2021208074)+1 种基金Tianjin Science and Technology Project(19YFSLQY00070)Natural Science Foundation of Shandong Province(ZR2021MB104).
文摘The design of novel catalysts for efficient electroreduction of CO_(2) into valueadded chemicals is a promising approach to alleviate the energy crisis.Herein,we successfully modify the carbon nanotube by a layer of mesoporous carbon shell anchored by nickel(Ni)nanoparticles.Ni species effectively enable carbon deposition derived from pyrolysis of surfactant 1-hexadecyl trimethyl ammonium bromide to form a mesoporous carbon shell.At the same time,Ni nanoparticles can be embedded in the mesoporous carbon shell due to the confinement effect.Owing to the dispersive Ni nanoparticles and N-doping active sites of mesoporous carbon,the as-prepared electrocatalyst exhibits exciting catalytic performance for the selective reduction of CO_(2) to carbon monoxide(CO)with a maximum Faradaic efficiency of 98%at a moderate overpotential of−0.81 V(vs.reversible hydrogen electrode)and a high partial current density of 60 mA cm^(−2) in H-cell with an aqueous electrolyte.
基金supported by Shanghai Science and Technology Plan Project(No.23ZR1467000)the Fundamental Research Funds for the Central University(No.22120240354)+1 种基金the National Natural Science Foundation of China(No.22131004)the Leading Scientific Research Project from China National Nuclear Corporation(No.CNNC–CXLM-202205).
文摘The efficient electrocatalytic nitrate(NO_(3)^(−))reduction to ammonia(NRA)offers a sustainable alternative for both environmental remediation and ammonia synthesis.Developing advanced electrocatalysts with rationally designed spatial arrangement of active sites and optimizing the synergetic effect among components are crucial for high efficiency and selectivity.Herein,we present Fe/N active sites decorated on porous carbon nanofibers(CNFs)with encapsulated FeCo nanoparticles(FeCo@CNFs-Fe/N)as electrocatalysts for NRA.The FeCo@CNFs-Fe/N catalyst demonstrates exceptional performance,achieving a high ammonia yield of 498.18μmol/(h·g_(cat)).Meanwhile,the enhanced reduction activity,especially the reduction in overpotential by 0.565 V,is 3–10 times higher than that of FeCo-encapsulated and Fe/N-modified CNFs-based catalysts.The enhanced catalytic activity is attributed to the efficient structure design and optimized spatial distribution of active sites,which enhance the electron transfer rate and decrease the reaction energy barrier.Mechanistic studies reveal that the synergetic effect between encapsulated nanoparticles and surface-modified Fe/N sites plays a crucial role in promoting efficient nitrate adsorption and selective ammonia production.These findings highlight the potential of strategically engineered CNF-based composites for nitrate reduction and other advanced electrocatalytic applications.
基金Project(208151)supported by the Key Project of Ministry of Education,ChinaProject(1014RJZA035)supported by the Natural Science Foundation of Gansu Province,China
文摘Carbon encapsulated Fe nanoparticles were successfully prepared via confined arc plasma method. The composition, morphology, microstructure, specific surface area and particle size of the product were characterized via X-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectrometry and Brunauer-Emmett-Teller N2 adsorption. The experiment results show that the carbon encapsulated Fe nanoparticles have clear core-shell structure. The core of the particles is body centered cubic Fe, and the shell is disorder carbons. The particles are in spherical or ellipsoidal shapes. The particle size of the nanocapsules ranges from 15 to 40 nm, with the average value of about 30 nm. The particle diameter of the core is 18 nm, the thickness of the shells is 6-8 nm, and the specific surface area is 24 m2/g.
基金support by the National Natural Science Foundation of China(No.22279047).
文摘The fabrication of one-dimensional metal/N-doped carbon materials has shown a promising prospect as efficient electrocata-lysts for oxygen reduction reaction(ORR).Herein,CoNi alloy nanoparticles anchored on N-doped carbon nanotubes(CoNi@NCNT)are prepared by a dual-template strategy,using polypyrrole(PPy)tubes and CoNi-based metal-organic framework as the precursors.The as-formed CoNi@NCNT catalyst displays a half-wave potential(0.83 V)as well as good durability under alkaline medium.The excellent electrocatalytic performance is ascribed to a synergistic coupling of hierarchically tubular structure,highly electronic conductivity,and abundantly alloy-type active sites.When the CoNi@NCNT catalyst is applied in zinc-air battery(ZAB),the device displays a stable charge-discharge cycling performance.The present work affords a useful approach to constructing alloy/nitrogen-incorporated carbon-aceous materials as bifunctional electrocatalysts for high-performance ZABs.
基金supported by the Natural Science Foundation of Zhejiang Province(LY17B030010)~~
文摘The carbonization process of a sucrose‐RuCl3/SBA‐15composite towards a Ru‐containing ordered mesoporous carbon(Ru‐OMC)catalyst was studied by in situ temperature‐programmed infrared spectroscopy to identify the stabilization role of organic carbon precursors during the formation of highly dispersed Ru nanoparticles.The results show that the formation of metal carbonyl species results in the formation of homogeneously distributed Ru nanoparticles,and the rigid silica support and carbon matrix around the Ru(CO)x complex can significantly avoid the sintering and agglomeration of Ru metal particles during elevated temperature thermal treatment.These results ultimately demonstrate that sucrose plays important roles in the formation of homogeneously distributed Ru nanoparticles in a porous carbon matrix.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
文摘Designing Fischer-Tropsch synthesis(FTS)catalysts to selectively produce liquid hydrocarbon fuels is a crucial challenge.Herein,we selectively introduced Co nanoparticles(NPs)into the micropores and mesopores of an ordered mesoporous MFI zeolite(OMMZ)through impregnation,which controlled the carbon number distribution in the FTS products by tuning the position of catalytic active sites in differently sized pores.The Co precursors coordinated by acetate with a size of 9.4×4.2×2.5Åand by 2,2'-bipyridine with a size of 9.5×8.7×7.9Å,smaller and larger than the micropores(ca.5.5Å)of MFI,made the Co species incorporated in OMMZ's micropores and mesopores,respectively.The carbon number products synthesized with the Co NPs confined in mesopores were larger than that in micropores.The high jet and diesel selectivities of 66.5%and 65.3%were achieved with Co NPs confined in micropores and mesopores of less acidic Na-type OMMZ,respectively.Gasoline and jet selectivities of 76.7%and 70.8%were achieved with Co NPs confined in micropores and mesopores of H-type OMMZ with Brönsted acid sites,respectively.A series of characterizations revealed that the selective production of diesel and jet fuels was due to the C-C cleavage suppressing of heavier hydrocarbons by the Co NPs located in mesopores.