Solubility enhancement has been a priority to overcome poor solubility with optoelectronic molecules for solution-processable devices. This study aims to obtain experimental data on the effect of particle sizes on the...Solubility enhancement has been a priority to overcome poor solubility with optoelectronic molecules for solution-processable devices. This study aims to obtain experimental data on the effect of particle sizes on the solubility properties of several typical optoelectronic molecules in organic solvents, including the solubility results of 1,3-bis(9-carbazolyl)benzene(m CP), 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)ben zene(TPBi) and 2-(4-tert-butylphenyl)-5-(4-biphenyl)-1,3,4-oxadiazole(PBD) in ethanol and acetonitrile,respectively. Nanoparticles of m CP, TPBi and PBD with sizes from dozens to several hundred nanometers were prepared by solvent antisolvent precipitation method and their solubility were determined by using isothermal saturation method. The saturation solubility of nanoparticles of three kinds of optoelectronic molecules exhibited increase of 12.9%-25.7% in comparison to the same raw materials in the form of microparticles. The experimental evidence indicates that nanonization technology is a feasible way to make optoelectronic molecules dissolve in liquids with enhanced solubility.展开更多
The aim of this study was to produce niflumic acid nanoparticles without using an organic solvent, in order to achieve an increased rate of dissolution of the final products. Co-grinding with excipients was used to de...The aim of this study was to produce niflumic acid nanoparticles without using an organic solvent, in order to achieve an increased rate of dissolution of the final products. Co-grinding with excipients was used to decrease the particle size. Poloxamer 188 (P) and mannitol (M) applied as co-grinding materials stabilized the system, preventing aggregation of the nanocrystals. The morphology and particle size distribution of the products were visualized by using scanning electron microscopy and laser diffraction. The crystalline states of the samples were investigated by differential scanning calorimetry and X-ray powder diffraction. The rate of dissolution of niflumic acid was measured with a paddle method from simulated media. It was concluded that the particles produced were in the nanometer range (the mean particle size was ~250 nm) and the nanoparticles maintained their crystallinity during the process. The rate of dissolution of the coground sample was significantly improved.展开更多
Single crystallization is an important strategy to resolve intergranular cracks and unnecessary side reactions with electrolytes in layered transition metal oxide cathodes LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811).Due t...Single crystallization is an important strategy to resolve intergranular cracks and unnecessary side reactions with electrolytes in layered transition metal oxide cathodes LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811).Due to the limitations of high-temperature sintering and multi-step calcination,single crystal NMC811 generally shows irregular particles with a size of 2-3μm.However,the prolonged Li-ion diffusion pathway and the stress generated by the uneven de-/intercalation sluggish Li-ion diffusion kinetics,what is more,cause structural damage such as intragranular cracks.A slow Li extraction rate or particle size reduction will ameliorate the structural damage and improve the cycling stability.As the most promising cathodes for next-generation power batteries,NMC811 required fast charge performance and cycle stability.Particle size reduction appears to be the displacement option.Nanonization is an effective strategy to mitigate intragranular cracks of single crystal NMC811.However,the serious aggregation and increased specific surface area become new challenges.In this article,we synthesized monodisperse nanoscale single crystal NMC811 by molten salt method and modified the surface by LiNbO3 coating.The electrochemical performance shows that nanoscale single crystal NMC811 has faster kinetic and higher capacity retention,so the strategy of combining nanonization and surface coating is an alternative way to prepare high specific capacity and cycle stable single crystal NMC811.展开更多
目的研究纳米淡水珍珠粉(nanonized freshwater pearl powder,NFPP)对成骨细胞成骨活性的影响。方法将NFPP与成骨细胞在体外共同培养,以纳米羟基磷灰石(nanonized hydroxyapatite,NAHA)作为阳性对照组,空白组作为阴性对照组,以细胞贴壁...目的研究纳米淡水珍珠粉(nanonized freshwater pearl powder,NFPP)对成骨细胞成骨活性的影响。方法将NFPP与成骨细胞在体外共同培养,以纳米羟基磷灰石(nanonized hydroxyapatite,NAHA)作为阳性对照组,空白组作为阴性对照组,以细胞贴壁实验检测成骨细胞的黏附,CCK-8法检测成骨细胞的增殖,碱性磷酸酶(alkaline phosphatase,ALP)试剂盒检测成骨细胞的分化,茜素红染色检测成骨细胞矿化结节的形成。结果成骨细胞的增殖、分化在实验组与两对照组间比较,差异均有统计学意义(P<0.05),但细胞贴壁率实验组与阳性对照组间比较,差异无统计学意义(P>0.05)。实验组中矿化结节面积高于两对照组。结论NFPP能促进成骨细胞的增殖、分化与矿化结节的形成,但对成骨细胞黏附的促进作用与NAHA基本一致。展开更多
基金financial support from National Natural Science Foundation of China (22288102)the Fundamental Research Funds for the Central Universities of China (buctrc202016)。
文摘Solubility enhancement has been a priority to overcome poor solubility with optoelectronic molecules for solution-processable devices. This study aims to obtain experimental data on the effect of particle sizes on the solubility properties of several typical optoelectronic molecules in organic solvents, including the solubility results of 1,3-bis(9-carbazolyl)benzene(m CP), 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)ben zene(TPBi) and 2-(4-tert-butylphenyl)-5-(4-biphenyl)-1,3,4-oxadiazole(PBD) in ethanol and acetonitrile,respectively. Nanoparticles of m CP, TPBi and PBD with sizes from dozens to several hundred nanometers were prepared by solvent antisolvent precipitation method and their solubility were determined by using isothermal saturation method. The saturation solubility of nanoparticles of three kinds of optoelectronic molecules exhibited increase of 12.9%-25.7% in comparison to the same raw materials in the form of microparticles. The experimental evidence indicates that nanonization technology is a feasible way to make optoelectronic molecules dissolve in liquids with enhanced solubility.
文摘The aim of this study was to produce niflumic acid nanoparticles without using an organic solvent, in order to achieve an increased rate of dissolution of the final products. Co-grinding with excipients was used to decrease the particle size. Poloxamer 188 (P) and mannitol (M) applied as co-grinding materials stabilized the system, preventing aggregation of the nanocrystals. The morphology and particle size distribution of the products were visualized by using scanning electron microscopy and laser diffraction. The crystalline states of the samples were investigated by differential scanning calorimetry and X-ray powder diffraction. The rate of dissolution of niflumic acid was measured with a paddle method from simulated media. It was concluded that the particles produced were in the nanometer range (the mean particle size was ~250 nm) and the nanoparticles maintained their crystallinity during the process. The rate of dissolution of the coground sample was significantly improved.
基金financially supported by the National Natural Science Foundation of China(Nos.52022088,51971245,51772262,U20A20336,21935009)Natural Science Foundation of Hebei Province(Nos.F2021203097,B2020203037)China Postdoctoral Science Foundation(No.2021M702756)。
文摘Single crystallization is an important strategy to resolve intergranular cracks and unnecessary side reactions with electrolytes in layered transition metal oxide cathodes LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811).Due to the limitations of high-temperature sintering and multi-step calcination,single crystal NMC811 generally shows irregular particles with a size of 2-3μm.However,the prolonged Li-ion diffusion pathway and the stress generated by the uneven de-/intercalation sluggish Li-ion diffusion kinetics,what is more,cause structural damage such as intragranular cracks.A slow Li extraction rate or particle size reduction will ameliorate the structural damage and improve the cycling stability.As the most promising cathodes for next-generation power batteries,NMC811 required fast charge performance and cycle stability.Particle size reduction appears to be the displacement option.Nanonization is an effective strategy to mitigate intragranular cracks of single crystal NMC811.However,the serious aggregation and increased specific surface area become new challenges.In this article,we synthesized monodisperse nanoscale single crystal NMC811 by molten salt method and modified the surface by LiNbO3 coating.The electrochemical performance shows that nanoscale single crystal NMC811 has faster kinetic and higher capacity retention,so the strategy of combining nanonization and surface coating is an alternative way to prepare high specific capacity and cycle stable single crystal NMC811.