The steel industry produces many byproducts, requiring extensive land for storage and causing significant environmental contamination. Industrial effluents discharged into water bodies negatively impact both aquatic e...The steel industry produces many byproducts, requiring extensive land for storage and causing significant environmental contamination. Industrial effluents discharged into water bodies negatively impact both aquatic ecosystems and human health. To solve this problem, this study synthesized a composite of titanium dioxide (TiO2) and steel slag nanocomposites (SSNC) at a 1:2 mass ratio to create a robust photocatalyst for the treatment of synthetic wastewater. The efficacy of this catalyst in degrading various dye pollutants, including methylene blue (MB), was tested under simulated solar light conditions. Comprehensive analyses were conducted to assess the physical and chemical characteristics, crystalline structure, energy gap, and point of zero charge of the composite. The TiO2-SSNC composite catalyst exhibited excellent stability, with a point of zero charge at 8.342 and an energy gap of 2.4 eV. The degradation process conformed to pseudo-first-order kinetics. Optimization of operational parameters was achieved through the response surface methodology. Reusability tests demonstrated that the TiO2-SSNC composite catalyst effectively degraded up to 93.41% of MB in the suspended mode and 92.03% in the coated mode after five cycles. Additionally, the degradation efficiencies for various dyes were significant, highlighting the potential of the composite for broad applications in industrial wastewater treatment. This study also explored the degradation mechanisms and identified byproducts, establishing a pathway for contaminant breakdown. The cost-benefit analysis revealed a total cost of 0.842 8 USD per cubic meter for each treatment activity, indicating low operational and production costs. These findings underscore the promise of the TiO2-SSNC composite as a cost-effective and efficient alternative for wastewater purification.展开更多
Synergistic interplays involving multiple active centers originating from TiO2 nanotube layers(TNT)and ruthenium(Ru)species comprising of both single atoms(SAs)and nanoparticles(NPs)augment the alkaline hydrogen evolu...Synergistic interplays involving multiple active centers originating from TiO2 nanotube layers(TNT)and ruthenium(Ru)species comprising of both single atoms(SAs)and nanoparticles(NPs)augment the alkaline hydrogen evolution reaction(HER)by enhancing Volmer kinetics from rapid water dissociation and improving Tafel kinetics from efficient H*desorption.Atomic layer deposition of Ru with 50 process cycles results in a mixture of Ru SAs and 2.8-0.4 nm NPs present on TNT layers,and it emerges with the highest HER activity among all the electrodes synthesized.A detailed study of the Ti and Ru species using different high-resolution techniques confirmed the presence of Ti^(3+)states and the coexistence of Ru SAs and NPs.With insights from literature,the role of Ti^(3+),appropriate work functions of TNT layers and Ru,and the synergistic effect of Ru SAs and Ru NPs in improving the performance of alkaline HER were elaborated and justified.The aforementioned characteristics led to a remarkable performance by having 9mV onset potentials and 33 mV dec^(-1) of Tafel slopes and a higher turnover frequency of 1.72 H2 s^(-1) at 30 mV.Besides,a notable stability from 28 h staircase chronopotentiometric measurements for TNT@Ru surpasses TNT@Pt in comparison.展开更多
A new absorbent of nanometer-size TiO2 colloid for Cu(Ⅱ ) was studied in this work. The adsorption rate could reach above 99% when the pH values were at the range of 5-6. The adsorption balance time, adsorption cap...A new absorbent of nanometer-size TiO2 colloid for Cu(Ⅱ ) was studied in this work. The adsorption rate could reach above 99% when the pH values were at the range of 5-6. The adsorption balance time, adsorption capacities, and the eluent were investigated. A novel method of trace Cu( Ⅱ ) preconcentration and separation with nanometer-size titanium dioxide colloid and determination by flame atomic absorption spectrometry (FAAS) was advanced. The detection limit (3a) of the method was 1.15 μg · L^-1, and the relative standard deviation (R.S.D) was 1.53% (n=6). Environmental sample experiments were also conducted to test the feasibility of the method, and it came out that the recovery rates were between 95.9% and 97.8%.展开更多
A novel method of ultra-trace Cd(Ⅱ) preconcentration with nanometer-size TiO2 colloid and determination by graphite furnace atomic adsorption spectrometry(GFAAS) with slurry sampling was first advanced in this pa...A novel method of ultra-trace Cd(Ⅱ) preconcentration with nanometer-size TiO2 colloid and determination by graphite furnace atomic adsorption spectrometry(GFAAS) with slurry sampling was first advanced in this paper. The adsorption efficiency of nanometer-size TiO2 colloid for ultra-trace Cd(Ⅱ) could reach above 96% in a short time when the pH value was between 5 and 6. Other problems were also studied, such as adsorption capacity, nanometer-size TiO2 colloid dosage, effect of coexistent ions. The detection limit(3σ) and the relative standard deviation (R.S.D) of this method were 4.46.103 μg/L and 1.30%(n=7), respectively. The method was successfully applied to the analysis of environmental samples with recoveries between 93.8% and 96.4%.展开更多
The transparent anatase TiO 2 nanometer thin films were prepared by the sol-gel method on soda-lime glass.X-ray diffraction,thermal analysis and UV-visible spectrophotometer were used to analyze the formation of the ...The transparent anatase TiO 2 nanometer thin films were prepared by the sol-gel method on soda-lime glass.X-ray diffraction,thermal analysis and UV-visible spectrophotometer were used to analyze the formation of the phases.Only increasing the heat-treatment time,the average grain size has no obvious change.The mechanism of grain growth in TiO 2 thin film is probably as follows:the grain of coating will become grain core later;TiO 2 sol constantly deposited on the surface of TiO 2 grain and formed membrane with increasing of coating cycle times;TiO 2 grain in the film grow steadily.展开更多
基金supported by the Department of Chemical and Petrochemical Engineering,Egypt-Japan University of Science and Technology.
文摘The steel industry produces many byproducts, requiring extensive land for storage and causing significant environmental contamination. Industrial effluents discharged into water bodies negatively impact both aquatic ecosystems and human health. To solve this problem, this study synthesized a composite of titanium dioxide (TiO2) and steel slag nanocomposites (SSNC) at a 1:2 mass ratio to create a robust photocatalyst for the treatment of synthetic wastewater. The efficacy of this catalyst in degrading various dye pollutants, including methylene blue (MB), was tested under simulated solar light conditions. Comprehensive analyses were conducted to assess the physical and chemical characteristics, crystalline structure, energy gap, and point of zero charge of the composite. The TiO2-SSNC composite catalyst exhibited excellent stability, with a point of zero charge at 8.342 and an energy gap of 2.4 eV. The degradation process conformed to pseudo-first-order kinetics. Optimization of operational parameters was achieved through the response surface methodology. Reusability tests demonstrated that the TiO2-SSNC composite catalyst effectively degraded up to 93.41% of MB in the suspended mode and 92.03% in the coated mode after five cycles. Additionally, the degradation efficiencies for various dyes were significant, highlighting the potential of the composite for broad applications in industrial wastewater treatment. This study also explored the degradation mechanisms and identified byproducts, establishing a pathway for contaminant breakdown. The cost-benefit analysis revealed a total cost of 0.842 8 USD per cubic meter for each treatment activity, indicating low operational and production costs. These findings underscore the promise of the TiO2-SSNC composite as a cost-effective and efficient alternative for wastewater purification.
基金support from the European Union Horizon 2020 program(project HERMES,nr.952184)the Ministry of Education,Youth and Sports of the Czech Republic for supporting CEMNAT(LM2023037)+1 种基金Czech-NanoLab(LM2023051)infrastructures for providing ALD,SEM,EDX,XPS,TEM,and XRDCzech Science Foundation(project 23-08019X,EXPRO).
文摘Synergistic interplays involving multiple active centers originating from TiO2 nanotube layers(TNT)and ruthenium(Ru)species comprising of both single atoms(SAs)and nanoparticles(NPs)augment the alkaline hydrogen evolution reaction(HER)by enhancing Volmer kinetics from rapid water dissociation and improving Tafel kinetics from efficient H*desorption.Atomic layer deposition of Ru with 50 process cycles results in a mixture of Ru SAs and 2.8-0.4 nm NPs present on TNT layers,and it emerges with the highest HER activity among all the electrodes synthesized.A detailed study of the Ti and Ru species using different high-resolution techniques confirmed the presence of Ti^(3+)states and the coexistence of Ru SAs and NPs.With insights from literature,the role of Ti^(3+),appropriate work functions of TNT layers and Ru,and the synergistic effect of Ru SAs and Ru NPs in improving the performance of alkaline HER were elaborated and justified.The aforementioned characteristics led to a remarkable performance by having 9mV onset potentials and 33 mV dec^(-1) of Tafel slopes and a higher turnover frequency of 1.72 H2 s^(-1) at 30 mV.Besides,a notable stability from 28 h staircase chronopotentiometric measurements for TNT@Ru surpasses TNT@Pt in comparison.
基金Supported by the Natural Science Foundation of Hubei Province(2006ABA236)
文摘A new absorbent of nanometer-size TiO2 colloid for Cu(Ⅱ ) was studied in this work. The adsorption rate could reach above 99% when the pH values were at the range of 5-6. The adsorption balance time, adsorption capacities, and the eluent were investigated. A novel method of trace Cu( Ⅱ ) preconcentration and separation with nanometer-size titanium dioxide colloid and determination by flame atomic absorption spectrometry (FAAS) was advanced. The detection limit (3a) of the method was 1.15 μg · L^-1, and the relative standard deviation (R.S.D) was 1.53% (n=6). Environmental sample experiments were also conducted to test the feasibility of the method, and it came out that the recovery rates were between 95.9% and 97.8%.
文摘A novel method of ultra-trace Cd(Ⅱ) preconcentration with nanometer-size TiO2 colloid and determination by graphite furnace atomic adsorption spectrometry(GFAAS) with slurry sampling was first advanced in this paper. The adsorption efficiency of nanometer-size TiO2 colloid for ultra-trace Cd(Ⅱ) could reach above 96% in a short time when the pH value was between 5 and 6. Other problems were also studied, such as adsorption capacity, nanometer-size TiO2 colloid dosage, effect of coexistent ions. The detection limit(3σ) and the relative standard deviation (R.S.D) of this method were 4.46.103 μg/L and 1.30%(n=7), respectively. The method was successfully applied to the analysis of environmental samples with recoveries between 93.8% and 96.4%.
文摘The transparent anatase TiO 2 nanometer thin films were prepared by the sol-gel method on soda-lime glass.X-ray diffraction,thermal analysis and UV-visible spectrophotometer were used to analyze the formation of the phases.Only increasing the heat-treatment time,the average grain size has no obvious change.The mechanism of grain growth in TiO 2 thin film is probably as follows:the grain of coating will become grain core later;TiO 2 sol constantly deposited on the surface of TiO 2 grain and formed membrane with increasing of coating cycle times;TiO 2 grain in the film grow steadily.