Osteochondral defects pose an enormous challenge,and no satisfactory therapy is available to date due to the hierarchy of the native tissue consisting of articular cartilage and subchondral bone.Constructing a scaffol...Osteochondral defects pose an enormous challenge,and no satisfactory therapy is available to date due to the hierarchy of the native tissue consisting of articular cartilage and subchondral bone.Constructing a scaffold with biological function and biomimetic structure is the key to achieving a high-quality repair effect.Herein,a natural polymer-based bilayer scaffold with a porous architecture similar to that of osteochondral tissue is designed,involving the transforming growth factor-beta3-liposome-loaded upper layer for superficial cartilage regeneration and the nanohydroxyapatite-coated lower layer for subchondral bone rehabilitation.This research is conducted to evaluate the effects of nanoparticle-modified bilayer scaffold to mimic the hierarchical pro-chondrogenic and proosteogenic microenvironment for the recruited endogenous bone marrow mesenchymal stem cells.The fabricated composites were evaluated for mechanical,physicochemical,biological properties,in vitro and in vivo tissue regeneration potential.Overall,the current bilayer scaffold could regenerate a cartilage-bone integrated tissue with a seamless interfacial integration and exhibited superior tissue repair outcomes compared to other single layer scaffolds based on morphological,radiological and histological evaluation,verifying that this novel graft could be an effective approach to tissue-engineered analogs of cartilage-subchondral bone and offer new therapeutic opportunities for osteochondral defect-associated diseases.展开更多
Titanium and its alloys are commonly used as dental and bone implant materials.Biomimetic coating of titanium surfaces could improve their osteoinductive properties.In this work,we have developed a novel osteogenic co...Titanium and its alloys are commonly used as dental and bone implant materials.Biomimetic coating of titanium surfaces could improve their osteoinductive properties.In this work,we have developed a novel osteogenic composite nanocoating for titanium surfaces,which provides a natural environment for facilitating adhesion,proliferation,and osteogenic differentiation of bone marrow mesenchymal stem cells(MSCs).Electrospinning was used to produce composite nanofiber coatings based on polycaprolactone(PCL),nano-hydroxyapatite(nHAp)and strontium ranelate(SrRan).Thus,four types of coatings,i.e.,PCL,PCL/nHAp,PCL/SrRan,and PCL/nHAp/SrRan,were applied on titanium surfaces.To assess chemical,morphological and biological properties of the developed coatings,EDS,FTIR,XRD,XRF,SEM,AFM,in-vitro cytotoxicity and in-vitro hemocompatibility analyses were performed.Our findings have revealed that the composite nanocoatings were both cytocompatible and hemocompatible;thus PCL/HAp/SrRan composite nanofiber coating led to the highest cell viability.Osteogenic culture of MSCs on the nanocoatings led to the osteogenic differentiation of stem cells,confirmed by alkaline phosphatase activity and mineralization measurements.The findings support the notion that the proposed composite nanocoatings have the potential to promote new bone formation and enhance bone-implant integration.展开更多
A novel scaffold containing collagen-I/polylactic acid(PLA)/nanohydroxyapatite(nHA) was prepared via co-electrospinning method. Different target substrates were used to improve the collection efficiency of this sc...A novel scaffold containing collagen-I/polylactic acid(PLA)/nanohydroxyapatite(nHA) was prepared via co-electrospinning method. Different target substrates were used to improve the collection efficiency of this scaffold. The properties of the novel scaffold were compared with those of conventionally prepared ones. Compared to con- ventional method, the modified method was more efficient in producing the scaffold. Moreover, the porosity, thickness, and morphology of the novel scaffold were better than those of scaffolds prepared by conventional methods. The properties of collagen-I, collagen-I/PLA and collagen-I/PLA/nHA scaffolds were also compared. Diameters of the electrospun fibers ranged from 180 to 405 nm, and roughness was present on the surface of the fibers due to the deposition of crystals of nHA along the long axis of the fibers. The fibers of the collagen-I/PLA/nHA scaffold and the fibers of natural bone tissue had similar structure.展开更多
Titaninm-nanohydroxyapatite (Ti-nHA) composite powders, composed of titanium with 10 vol.% and 20 vol.% of nano-hydroxyapatite, were milled in a planetary ball mill using alcohol media to avoid excessive heat. XRD a...Titaninm-nanohydroxyapatite (Ti-nHA) composite powders, composed of titanium with 10 vol.% and 20 vol.% of nano-hydroxyapatite, were milled in a planetary ball mill using alcohol media to avoid excessive heat. XRD and SEM were performed for characterization of the microstructure, and the homogeneity of Ti/HA nanocomposite powder was evaluated by EPMA with prolonged ball milling time. The results show that under the condition of wet milling, the grain size of Ti-nHA composite powders is decreased with the increase in ball milling time and the amount of the addition of nHA. While for milling of 30 h, the nanocomposite powder with free structure, which consists of the nano-hydroxyapatite (nHA) particles and titanium (Ti) phase, is obtained. Three stages of milling can be observed from the dement mapping of Ti, Ca, and P by EPMA; meanwhile, it is found that the nHA would be more homogenously distributed after milling for 30 h.展开更多
The nanohydroxyapatites (HAP) and its biological effects have been studied using ultraviolet absorption spectrum, X-ray diffraction (XRD) structure analysis, fluorescent and infrared spectrum of absorption and MTT met...The nanohydroxyapatites (HAP) and its biological effects have been studied using ultraviolet absorption spectrum, X-ray diffraction (XRD) structure analysis, fluorescent and infrared spectrum of absorption and MTT method. The nanohyd- roxyapatites are prepared and made by using Sol-gel method, in which the parameters of process and reaction are controlled as: PH 】9, Ca/P = 1.67, sintering temperature of 1100?C and sintering time 2 hours. The results of the study show that nanohydroxyapatites can absorb the amino acid molecules, the absorption is better for stronger acidity of amino acids. We also find that the nanohydroxyapatites and complex of nanoHAP+ nanoCrO2 can all restrain the proliferation of cells, but their toxiciteis are all first degree or minor, but the restrained effect of the latter is smaller than that of the former, although they can decrease the relative proliferation rate of cells. The nanohydroxyapatites can also change the molecular structure of human serum albumin.展开更多
In this study, nanohydroxyapatite/polyurethane (nHA/PU) composites with various contents of methoxy- poly(ethylene glycol) modified nHA (0 wt%, 10 wt%, 20 wt% and 30 wt%) were prepared by solution blending proce...In this study, nanohydroxyapatite/polyurethane (nHA/PU) composites with various contents of methoxy- poly(ethylene glycol) modified nHA (0 wt%, 10 wt%, 20 wt% and 30 wt%) were prepared by solution blending process. The physicochemical properties of the composite membranes were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission electronic microscopy (TEM), Differential scanning calorimetry (DSC), Thermo gravimetric analysis (TGA) and tensile tests. TEM photos of the nanocomposites showed that the nHA was uniformly dispersed in the polymer matrix. The membrane with 10 wt% nHA showed the highest tensile strength which was about 75% higher than that of the pure PU membrane. However, the tensile strength decreased when high content (above 20 wt%) fillers were added, which was still higher than that of pure PU. TGA measurements suggested that the thermal stability of the membranes was improved owing to nHA fillers. XRD and DSC results illustrated that the crystallinity of PU soft segments decreased with the increasing content of nanoparticles in the composites.展开更多
Three-dimensional macroporous scaffolds are commonly used in bone tissue engineering applications since they provide sufficient space for cell migration and proliferation, facilitating bone ingrowth and implant vascul...Three-dimensional macroporous scaffolds are commonly used in bone tissue engineering applications since they provide sufficient space for cell migration and proliferation, facilitating bone ingrowth and implant vascularisation. The aim of this work was to combine two simple methods, freeze-drying and gas-foaming, in order to fabricate highly macroporous bone scaffolds made of chitosan/agarose matrix reinforced with nanohydroxyapatite. The secondary goal of this research was to comprehensively assess biomedical potential of developed biomaterials. In this work, it was demonstrated that simultaneous application of freeze-drying and gas-foaming technique allows to obtain hybrid(as proven by ATR-FTIR)macroporous bone scaffolds(pore diameter > 50 um) characterized by high open(70%) and interconnected porosity. Novel scaffolds were non-toxic, favoured osteoblasts adhesion and growth and induced apatite formation on their surfaces, indicating their high bioactivity that is essential for good implant osseointegration. Biomaterials were also prone to enzymatic degradation, degradation in acidified microenvironment(e.g. osteoclast-mediated), and slow degradation under physiological p H of 7.4.Moreover, the scaffolds revealed microstructure(70% open porosity, SSA approx. 30 m2/g, high share of macropores with diameter in the range 100-410 um) and compressive strength(1–1.4 MPa) comparable to cancellous bone, indicating that they are promising implants for cancellous bone regeneration.展开更多
A new Precision Extrusion nozzle based ball screw transmission was developed. 3D hierarchical porous PLLA/nano-Hydroxyapatite(PLLA/nHA) scaffolds were fabricated by low-temperature deposition manufacturing. Scaffold...A new Precision Extrusion nozzle based ball screw transmission was developed. 3D hierarchical porous PLLA/nano-Hydroxyapatite(PLLA/nHA) scaffolds were fabricated by low-temperature deposition manufacturing. Scaffolds with macropores of 200-500 rtm and micropores about 10 pm were fabricated through a thorough study and control of the processing parameters, in which the processing path and speed of material extrusion determine the macropores and there is a suitable temperature zone for fabricating qualified macropores. Micropore morphology can be controlled by adjusting supercooling of solvent crystallization or adding water into the solvent system. The compressive modulus of the scaffolds in air and phosphate buffer solution was measured, which increased with HA addition. In-vitro cell culture results showed a ~ood biocomoatibilitv of PLLA/HA scaffolds with the ore-osteoblastic MC3T3-E1 cells.展开更多
The interface and surface properties of nano-hydroxyapatite(n-HA) and poly( 1, 4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are so...The interface and surface properties of nano-hydroxyapatite(n-HA) and poly( 1, 4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are some strong interface combinations of calcium ion (Ca2+ ), car-boxyl (-COO- ) and phosphate radicle ion (PO_4~3- ) between copolymer and n-HA in the composite. The presence of the 2,4-phenylene sulfide acid in copolymer can increase the affinity to n-HA, which causes the formation of chemical bindings between the PPS-PPSA copolymer and n-HA. XRD analysis and IR surface analysis indicate that n-HA is not encapsulated by copolymer but exposed on the surface of the composite, and has same structure and properties with the origi-nal n-HA. The presence of the interface chemical bindings between the PPS-PPSA copolymer and n-HA can increase the content of n-HA in composite but does not cause the decrease of the composite mechanical strength.展开更多
基金supported by grants from the China Postdoctoral Science Foundation(Nos.2022TQ0397,2022MD723744,2022M710564,2022M720603)Natural Science Foundation of China(Nos.82272553,82102571,81974346,8210257,82472404)+8 种基金Chongqing Municipal Medical Youth Talent Support Program,Chongqing,China(No.YXQN202408)Natural Science Foundation of Chongqing,China(Nos.CSTB2022NSCQ-MSX0089,CSTB2022NSCQ-MSX0104,CSTB2024NSCQMSX0532)Joint Medical Research Project of Health Commission&Science and Technology Bureau of Chongqing,China(No.2024QNXM032)Special Project for the Central Government to Guide the Development of Local Science and Technology in Sichuan Province(No.2023ZYD0071)National Natural Science Foundation of Sichuan(No.24NSFSC1274)Project of Innovative Science Research for Postgraduate of Chongqing Municipal Education Committee,Chongqing,China(Nos.CYS22389,CYB240224)National Natural Science Foundation of Sichuan(No.2024NSFSC0678)Research Project of the Affiliated Hospital of North Sichuan Medical College(Nos.2023ZD002,2023-2ZD001,2024JB001)Disciplines Construction Program of The Third Affiliated Hospital of Chongqing Medical University(Nos.KY23035,KY23041).
文摘Osteochondral defects pose an enormous challenge,and no satisfactory therapy is available to date due to the hierarchy of the native tissue consisting of articular cartilage and subchondral bone.Constructing a scaffold with biological function and biomimetic structure is the key to achieving a high-quality repair effect.Herein,a natural polymer-based bilayer scaffold with a porous architecture similar to that of osteochondral tissue is designed,involving the transforming growth factor-beta3-liposome-loaded upper layer for superficial cartilage regeneration and the nanohydroxyapatite-coated lower layer for subchondral bone rehabilitation.This research is conducted to evaluate the effects of nanoparticle-modified bilayer scaffold to mimic the hierarchical pro-chondrogenic and proosteogenic microenvironment for the recruited endogenous bone marrow mesenchymal stem cells.The fabricated composites were evaluated for mechanical,physicochemical,biological properties,in vitro and in vivo tissue regeneration potential.Overall,the current bilayer scaffold could regenerate a cartilage-bone integrated tissue with a seamless interfacial integration and exhibited superior tissue repair outcomes compared to other single layer scaffolds based on morphological,radiological and histological evaluation,verifying that this novel graft could be an effective approach to tissue-engineered analogs of cartilage-subchondral bone and offer new therapeutic opportunities for osteochondral defect-associated diseases.
文摘Titanium and its alloys are commonly used as dental and bone implant materials.Biomimetic coating of titanium surfaces could improve their osteoinductive properties.In this work,we have developed a novel osteogenic composite nanocoating for titanium surfaces,which provides a natural environment for facilitating adhesion,proliferation,and osteogenic differentiation of bone marrow mesenchymal stem cells(MSCs).Electrospinning was used to produce composite nanofiber coatings based on polycaprolactone(PCL),nano-hydroxyapatite(nHAp)and strontium ranelate(SrRan).Thus,four types of coatings,i.e.,PCL,PCL/nHAp,PCL/SrRan,and PCL/nHAp/SrRan,were applied on titanium surfaces.To assess chemical,morphological and biological properties of the developed coatings,EDS,FTIR,XRD,XRF,SEM,AFM,in-vitro cytotoxicity and in-vitro hemocompatibility analyses were performed.Our findings have revealed that the composite nanocoatings were both cytocompatible and hemocompatible;thus PCL/HAp/SrRan composite nanofiber coating led to the highest cell viability.Osteogenic culture of MSCs on the nanocoatings led to the osteogenic differentiation of stem cells,confirmed by alkaline phosphatase activity and mineralization measurements.The findings support the notion that the proposed composite nanocoatings have the potential to promote new bone formation and enhance bone-implant integration.
基金Supported by the Scientific and Technological Developing Scheme of Jilin Province,China(No.20080302)the Fund of Jilin Provincial Science and Technology Department,China(No.200705115)
文摘A novel scaffold containing collagen-I/polylactic acid(PLA)/nanohydroxyapatite(nHA) was prepared via co-electrospinning method. Different target substrates were used to improve the collection efficiency of this scaffold. The properties of the novel scaffold were compared with those of conventionally prepared ones. Compared to con- ventional method, the modified method was more efficient in producing the scaffold. Moreover, the porosity, thickness, and morphology of the novel scaffold were better than those of scaffolds prepared by conventional methods. The properties of collagen-I, collagen-I/PLA and collagen-I/PLA/nHA scaffolds were also compared. Diameters of the electrospun fibers ranged from 180 to 405 nm, and roughness was present on the surface of the fibers due to the deposition of crystals of nHA along the long axis of the fibers. The fibers of the collagen-I/PLA/nHA scaffold and the fibers of natural bone tissue had similar structure.
基金This work was financially supported by the Science and Technology Key Project of Guangdong Province, China (No.2006B35801001)
文摘Titaninm-nanohydroxyapatite (Ti-nHA) composite powders, composed of titanium with 10 vol.% and 20 vol.% of nano-hydroxyapatite, were milled in a planetary ball mill using alcohol media to avoid excessive heat. XRD and SEM were performed for characterization of the microstructure, and the homogeneity of Ti/HA nanocomposite powder was evaluated by EPMA with prolonged ball milling time. The results show that under the condition of wet milling, the grain size of Ti-nHA composite powders is decreased with the increase in ball milling time and the amount of the addition of nHA. While for milling of 30 h, the nanocomposite powder with free structure, which consists of the nano-hydroxyapatite (nHA) particles and titanium (Ti) phase, is obtained. Three stages of milling can be observed from the dement mapping of Ti, Ca, and P by EPMA; meanwhile, it is found that the nHA would be more homogenously distributed after milling for 30 h.
文摘The nanohydroxyapatites (HAP) and its biological effects have been studied using ultraviolet absorption spectrum, X-ray diffraction (XRD) structure analysis, fluorescent and infrared spectrum of absorption and MTT method. The nanohyd- roxyapatites are prepared and made by using Sol-gel method, in which the parameters of process and reaction are controlled as: PH 】9, Ca/P = 1.67, sintering temperature of 1100?C and sintering time 2 hours. The results of the study show that nanohydroxyapatites can absorb the amino acid molecules, the absorption is better for stronger acidity of amino acids. We also find that the nanohydroxyapatites and complex of nanoHAP+ nanoCrO2 can all restrain the proliferation of cells, but their toxiciteis are all first degree or minor, but the restrained effect of the latter is smaller than that of the former, although they can decrease the relative proliferation rate of cells. The nanohydroxyapatites can also change the molecular structure of human serum albumin.
基金financially supported by the National Natural Science Foundation of China(No.50973069)the project of Postgraduate Degree Construction,Southwest University for Nationalities(No.2013XWD-S0703)
文摘In this study, nanohydroxyapatite/polyurethane (nHA/PU) composites with various contents of methoxy- poly(ethylene glycol) modified nHA (0 wt%, 10 wt%, 20 wt% and 30 wt%) were prepared by solution blending process. The physicochemical properties of the composite membranes were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission electronic microscopy (TEM), Differential scanning calorimetry (DSC), Thermo gravimetric analysis (TGA) and tensile tests. TEM photos of the nanocomposites showed that the nHA was uniformly dispersed in the polymer matrix. The membrane with 10 wt% nHA showed the highest tensile strength which was about 75% higher than that of the pure PU membrane. However, the tensile strength decreased when high content (above 20 wt%) fillers were added, which was still higher than that of pure PU. TGA measurements suggested that the thermal stability of the membranes was improved owing to nHA fillers. XRD and DSC results illustrated that the crystallinity of PU soft segments decreased with the increasing content of nanoparticles in the composites.
基金financially supported by the National Science Centre(NCN)in Poland within OPUS 16(No.UMO2018/31/B/ST8/00945)Analysis(ATR-FTIR)performed by Aleksandra Benko was supported by the National Science Centre(NCN)in Poland(No.UMO-2017/24/C/ST8/00400)+1 种基金financial support through Project PCIN2017-128/AEIRamon y Cajal fellowship of CC。
文摘Three-dimensional macroporous scaffolds are commonly used in bone tissue engineering applications since they provide sufficient space for cell migration and proliferation, facilitating bone ingrowth and implant vascularisation. The aim of this work was to combine two simple methods, freeze-drying and gas-foaming, in order to fabricate highly macroporous bone scaffolds made of chitosan/agarose matrix reinforced with nanohydroxyapatite. The secondary goal of this research was to comprehensively assess biomedical potential of developed biomaterials. In this work, it was demonstrated that simultaneous application of freeze-drying and gas-foaming technique allows to obtain hybrid(as proven by ATR-FTIR)macroporous bone scaffolds(pore diameter > 50 um) characterized by high open(70%) and interconnected porosity. Novel scaffolds were non-toxic, favoured osteoblasts adhesion and growth and induced apatite formation on their surfaces, indicating their high bioactivity that is essential for good implant osseointegration. Biomaterials were also prone to enzymatic degradation, degradation in acidified microenvironment(e.g. osteoclast-mediated), and slow degradation under physiological p H of 7.4.Moreover, the scaffolds revealed microstructure(70% open porosity, SSA approx. 30 m2/g, high share of macropores with diameter in the range 100-410 um) and compressive strength(1–1.4 MPa) comparable to cancellous bone, indicating that they are promising implants for cancellous bone regeneration.
基金Funded by the Harbin Science and Technology Innovation Researchers Project(No.2007RFXXSO21)
文摘A new Precision Extrusion nozzle based ball screw transmission was developed. 3D hierarchical porous PLLA/nano-Hydroxyapatite(PLLA/nHA) scaffolds were fabricated by low-temperature deposition manufacturing. Scaffolds with macropores of 200-500 rtm and micropores about 10 pm were fabricated through a thorough study and control of the processing parameters, in which the processing path and speed of material extrusion determine the macropores and there is a suitable temperature zone for fabricating qualified macropores. Micropore morphology can be controlled by adjusting supercooling of solvent crystallization or adding water into the solvent system. The compressive modulus of the scaffolds in air and phosphate buffer solution was measured, which increased with HA addition. In-vitro cell culture results showed a ~ood biocomoatibilitv of PLLA/HA scaffolds with the ore-osteoblastic MC3T3-E1 cells.
文摘The interface and surface properties of nano-hydroxyapatite(n-HA) and poly( 1, 4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are some strong interface combinations of calcium ion (Ca2+ ), car-boxyl (-COO- ) and phosphate radicle ion (PO_4~3- ) between copolymer and n-HA in the composite. The presence of the 2,4-phenylene sulfide acid in copolymer can increase the affinity to n-HA, which causes the formation of chemical bindings between the PPS-PPSA copolymer and n-HA. XRD analysis and IR surface analysis indicate that n-HA is not encapsulated by copolymer but exposed on the surface of the composite, and has same structure and properties with the origi-nal n-HA. The presence of the interface chemical bindings between the PPS-PPSA copolymer and n-HA can increase the content of n-HA in composite but does not cause the decrease of the composite mechanical strength.