Tetracycline(TC)is a broad-spectrum antibiotic,and its residues in the environment and food are harmful to human health.Therefore,it is essential to rapidly,sensitively,and conveniently detect TC.In this work,we devel...Tetracycline(TC)is a broad-spectrum antibiotic,and its residues in the environment and food are harmful to human health.Therefore,it is essential to rapidly,sensitively,and conveniently detect TC.In this work,we developed a portable silicon nanoparticles chelated Europium(Ⅲ)-based polyacrylonitrile(Eu-SiNPs/PAN)nanofiber membrane for rapid,sensitive,and convenient detection of TC.The Eu-SiNPs were synthesized with a facile one-pot method.The Eu-SiNPs/PAN nanofiber membrane was fabricated by electrospinning,combining Eu-SiNPs and PAN with three-dimensional porous membrane structures and UV resistance.Both the Eu-SiNPs and the Eu-SiNPs/PAN nanofiber membranes have good selectivity and anti-interference ability towards TC.The combined merits of rapid response,long storage life,easy portability,and naked-eye recognition of TC make the Eu-SiNPs/PAN nanofiber membrane a promising material for convenient TC detection applications.The practicability of these nanofiber membranes was further verified by detecting TC in real samples,such as lake water,drinking water and honey,and achieved quantitative detection.展开更多
Manganese-based chalcogenides have significant potential as anodes for sodium-ion batteries(SIBs) due to their high theoretical specific capacity, abundant natural reserves, and environmental friendliness. However, th...Manganese-based chalcogenides have significant potential as anodes for sodium-ion batteries(SIBs) due to their high theoretical specific capacity, abundant natural reserves, and environmental friendliness. However, their application is hindered by poor cycling stability, resulting from severe volume changes during cycling and slow reaction kinetics due to their complex crystal structure. Here, an efficient and straightforward strategy was employed to in-situ encapsulate single-phase porous nanocubic MnS_(0.5)Se_(0.5) into carbon nanofibers using electrospinning and the hard template method, thus forming a necklace-like porous MnS_(0.5)Se_(0.5)-carbon nanofiber composite(MnS_(0.5)Se_(0.5)@N-CNF). The introduction of Se significantly impacts both the composition and microstructure of MnS_(0.5)Se_(0.5), including lattice distortion that generates additional defects, optimization of chemical bonds, and a nano-spatially confined design. In situ/ex-situ characterization and density functional theory calculations verified that this MnS_(0.5)Se_(0.5)@N-CNF allevi- ates the volume expansion and facilitates the transfer of Na+/electron. As expected, MnS_(0.5)Se_(0.5)@N-CNF anode demonstrates excellent sodium storage performance, characterized by high initial Coulombic efficiency(90.8%), high-rate capability(370.5 m Ahg^(-1) at 10 Ag^(-1)) and long durability(over 5000 cycles at 5 Ag^(-1)). The MnS_(0.5)Se_(0.5)@N-CNF//NVP@C full cell, assembled with MnS_(0.5)Se_(0.5)@N-CNF as anode and Na_(3)V_(2)(PO_4)_(3)@C as cathode, exhibits a high energy density of 254 Wh kg^(-1) can be provided. This work presents a novel strategy to optimize the design of anode materials through structural engineering and Se substitution, while also elucidating the underlying reaction mechanisms.展开更多
The development of efficient,cost-effective catalysts for the oxygen reduction reaction(ORR)is crucial for advancing zinc-air batteries(ZABs).This study presents Fe_(4)N nanoparticles embedded in N-doped carbon nanofi...The development of efficient,cost-effective catalysts for the oxygen reduction reaction(ORR)is crucial for advancing zinc-air batteries(ZABs).This study presents Fe_(4)N nanoparticles embedded in N-doped carbon nanofibers(Fe_(4)N@CNF-NH_(3))as a highly efficient ORR catalyst.The Fe_(4)N@CNF-NH_(3)catalyst was synthesized via electrospinning,followed by high-temperature annealing in an NH_(3)atmosphere.This electrospinning technique ensured the uniform dispersion of Fe_(4)N nanoparticles within the carbon nanofibers(CNFs),preventing agglomeration and enhancing the availability of active sites.Structural and morphological analyses confirmed the formation of Fe_(4)N nanoparticles with a lattice spacing of 0.213 nm,surrounded by graphitic carbon structures that significantly improved the material’s conductivity and stability.Electrochemical tests demonstrated that Fe_(4)N@CNF-NH_(3)exhibited superior ORR activity,with a half-wave potential of 0.904 V,surpassing that of commercial Pt/C catalysts.This enhanced performance is attributed to the synergistic effects of Fe_(4)N nanoparticles and the conductive carbon framework,which facilitated efficient charge and mass transfer during the ORR process.Density functional theory calculations further revealed that the introduction of CNFs positively shifted the d-band center of Fe atoms,optimizing oxygen intermediate adsorption and lowering energy barriers for ORR.The practical applicability of Fe_(4)N@CNF-NH_(3)was validated through the assembly of both liquid-state and solid-state ZABs,which exhibited excellent cycling stability,high power density,and superior discharge voltage.This study offers a promising strategy for developing highly active,low-cost ORR catalysts and advances the potential for the commercialization of ZABs.展开更多
Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the ...Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the smooth surface and chemical inertness of aramid fibers. Herein, AP are modified via the nacre-mimetic structure composed of aramid nanofibers (ANF) and carbonylated basalt nanosheets (CBSNs). This is achieved by impregnating AP into an ANF-CBSNs (A-C) suspension containing a 3D ANF framework as the matrix and 2D CBSNs as fillers. The resultant biomimetic composite papers (AP/A-C composite papers) exhibit a layered “brick-and-mortar” structure, demonstrating superior mechanical and electrical insulating properties. Notably, the tensile strength and breakdown strength of AP/A-C5 composite papers reach 39.69 MPa and 22.04 kV mm^(−1), respectively, representing a 155 % and 85 % increase compared to those of the control AP. These impressive properties are accompanied with excellent volume resistivity, exceptional dielectric properties, impressive folding endurance, outstanding heat insulation, and remarkable flame retardance. The nacre-inspired strategy offers an effective approach for producing highly promising electrical insulating papers for advanced electrical equipment.展开更多
Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longr...Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells.展开更多
Blister wounds are featured with over-generated wound exudate and extensive skin peeling,call for breathable temporary skin with effective exudate management,and function as an extracellular matrix to accelerate regen...Blister wounds are featured with over-generated wound exudate and extensive skin peeling,call for breathable temporary skin with effective exudate management,and function as an extracellular matrix to accelerate regeneration of wound skin.Traditional extracellular matrix(ECM)mimicked nanofibrous 3D scaffold and corresponding hydrogel composites suffer from poor mechanical strength,and the wound exudate management behavior is seldom studied.Herein,we proposed the strategy to enhance the mechanical properties of a 3D nanofiber scaffold via constructing a long nanofiber(NF)and sodium alginate(SA)aerogel interpenetrated architecture(NF/SA).The as-prepared scaffold was then evaluated as temporary skin for a full-thickness defect wound.After absorption of blister fluid,the aerogel transferred into a hydrogel and imparted a wet wound care environment with a water-vapor transmission rate of(6001.90±522.04)g/(m^(2)·24 h),and Young s modulus of(2.97±0.38)MPa.The exudate was continuously refreshed by a directed and dynamic pump,followed by volatilization driven by Brownian motion.Meanwhile,the NF/SA scaffold exhibited decent compatibility with blister fluid.The basic fibroblast growth factor(bFGF)-loaded NF/SA improved the wound healing rate by 36.46%on Day 3 and 15.34%on Day 7 in the full-thickness defect wound model.展开更多
High-temperature piezoelectric sen-sors are very important in severe environments such as fire safety,aerospace and oil drills,however,most current sensors are not heat res-istant(<300℃)and are fragile,which limit...High-temperature piezoelectric sen-sors are very important in severe environments such as fire safety,aerospace and oil drills,however,most current sensors are not heat res-istant(<300℃)and are fragile,which limits their use,especially in high-temperature environ-ments.A high-temperature resistant flexible piezoelectric film based on graphene oxide(GO)/polyacrylonitrile(PAN)composites was prepared by electrospinning and thermal treat-ment.It was packed into a micro-device,which could work continuously at 500℃.The intro-duction of GO significantly increased the mechanical properties of the PAN nanofibers because the oxygen-containing func-tional groups(electronegative groups)on the surface of the GO initiated a nucleophilic attack on the PAN molecule during heat treatment,enabling the GO to initiate the cyclization of the PAN at lower heat-treatment temperatures.In addition,the abund-ant oxygen-containing functional groups on GO acted as pro-oxidants to hasten the oxidation of PAN during heat treatment.The effects of GO content and heat treatment temperature on the properties of the nanofiber films were investigated.A GO/PAN nanofiber piezoelectric sensor heat-treated at 300℃had a 9.10 V and 2.25μA peak output,which are respectively 101.3%and 78.6%higher than those of the untreated films.Cyclic testing over 5000 cycles at 350℃confirmed the stable out-put performance of the GO/PAN nanofiber piezoelectric sensor.Furthermore,a sensor heat-treated at 400℃had a sensitivity of 1.7 V/N,which is 83.5%higher than that of an untreated one.The results show that the prepared GO/PAN nanofiber piezo-electric sensor combines high temperature resistance,high flexibility,stability and high sensitivity,and may have broad applic-ations in high temperature environments such as the aerospace and petroleum industries.展开更多
The need for bi-functional catalysts that facilit-ate both the oxygen reduction(ORR)and carbon dioxide re-duction(CO_(2)RR)reactions arises from their potential to help solve the critical problems of carbon neutrality...The need for bi-functional catalysts that facilit-ate both the oxygen reduction(ORR)and carbon dioxide re-duction(CO_(2)RR)reactions arises from their potential to help solve the critical problems of carbon neutrality and renew-able energy conversion.However,there are few reports on the development of bi-functional catalysts for zinc-air bat-tery-driven CO_(2)RR devices.We introduce a novel approach for synthesizing Fe_(2)N/Fe_(3)C species embedded in nitrogen-doped carbon nanofibers by electrospinning a solution of Hemin and polyacrylonitrile in N,N-dimethylformamide.The material has an exceptional catalytic performance,with a half-wave potential of 0.91 V versus RHE for the ORR and values of over 90%for both the selectivity and Faradaic efficiency for the CO_(2)RR.The high catalytic performances are attrib-uted to the strong coupling between the Fe_(3)C/Fe_(2)N heterostructure and the Fe-N-C sites in the nitrogen-doped carbon nan-ofibers.Notably,both Fe_(3)C and Fe_(2)N play distinct roles in both the ORR and CO_(2)RR.This investigation indicates a way for designing advanced carbon-based bi-functional catalysts for use in this field.展开更多
Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease of opera...Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease of operation.However,the low adsorption capacity of the reported adsorbents is still a challenge for wastewater treatment with highefficiency.Here,we developed a super adsorbent(SUA-1),which was a kind of porous carbon nanofibers derived from a composite of PAN-based electrospinning and ZIF-8(PAN/ZIF-8)via simple heat treatment process.The asprepared SUA showed an ultra-high adsorption capacity for adsorbing methyl blue(MB)at nearly three times its own weight,as high as 2998.18 mg/g.A series tests demonstrated that the pore-making effect of ZIF-8 during heat treatment process endowed high BET surface area and generated ZnO components as chemical adsorption center.Under the synergistic effect of bonding and non-bonding forces including ionic bond,electrostatic interaction,andπ-πinteraction,the adsorption capacity has been greatly improved.In view of promising efficiency,this work provides guidance and insights for the preparation of highly efficient adsorbents based on electrospinning derived porous carbon nanofibers.展开更多
To address the dual challenges of resource utilization of mining solid waste(e.g.,coal gangue)and performance enhancement of cemented rockfill,this study systematically investigates the mechanisms of ultrasonic disper...To address the dual challenges of resource utilization of mining solid waste(e.g.,coal gangue)and performance enhancement of cemented rockfill,this study systematically investigates the mechanisms of ultrasonic dispersion time and polycarboxylate superplasti-cizer(PCE)on the properties of cellulose nanofiber(CNF)-modified cemented rockfill.A series of comparative experiments were de-signed with varying ultrasonic dispersion times(0-60 min)and PCE dosages(0.1wt%-0.4wt%).Through mechanical testing,hydration product analysis,and microstructural characterization,the study revealed the advantages of PCE in promoting CNF dispersion to enhance the engineering applicability of cemented rockfill.The results demonstrate that:(1)Ultrasonic dispersion for 30 min increases the com-pressive strength by 37.7%compared to the untreated group;however,excessive ultrasonication(60 min)induces hydrolysis of CNF,re-leasing reducing sugars that retard hydration.(2)PCE facilitates CNF dispersion,achieving a 29.1%increase in compressive strength at a dosage of 0.4wt%,while simultaneously improving hydration products and microstructural development.(3)While ultrasonic dispersion yields slightly higher strength improvements,PCE demonstrates superior cost-effectiveness and operational convenience,rendering it more viable for industrial adoption.This study provides a theoretical foundation for the nano-enhanced modification of cemented rockfill,offering new insights into the recycling of solid waste and the development of high-performance materials.展开更多
Among their several unique properties,the high electrical conductivity and mechanical strength of carbon nanofibers make them suitable for applications such as catalyst support for fuel cells,flexible electrode materi...Among their several unique properties,the high electrical conductivity and mechanical strength of carbon nanofibers make them suitable for applications such as catalyst support for fuel cells,flexible electrode materials for secondary batteries,and sensors.However,their performance requires improvement for practical applications.Several methods have been pursued to achieve this,such as growing carbon nanotubes from carbon nanofibers;however,the transition metal catalyst used to grow carbon nanotubes causes problems,including side reactions.This study attempts to address this issue by growing numerous branched carbon nanofibers from the main carbon nanofibers using alkali metals.Excellent electrical conductivity is achieved by growing densely branched carbon nanofibers.Consequently,a current collector,binder,and conductive material-free anode material is realized,exhibiting excellent electrochemical performance compared with existing carbon nanofibers.The proposed method is expected to be a powerful tool for secondary batteries and have broad applicability to various fields.展开更多
Conductive hydrogels derived from natural polymers have attracted increasing attention in wearable electronics due to their inherent biocompatibility and sustainability.However,their poor mechanical strength,limited c...Conductive hydrogels derived from natural polymers have attracted increasing attention in wearable electronics due to their inherent biocompatibility and sustainability.However,their poor mechanical strength,limited conductivity and unsatisfactory environmental adaptability remain significant challenges fo r practical applications.In this study,we report a high-performance gelatin-based conductive hydrogel(GPC)reinforced with polypyrrole-decorated cellulose nanofibers(PPy@CNF)and enhanced by a zwitterionic betaine/(NH_(4))_(2)SO_(4) solution.The PPy@CNF hybrid nanofillers were synthesized via in situ oxidative polymerization,enabling homogeneous dispersion of PPy along the CNF su rface.The incorporation of PPy@CNF significantly improved both mechanical strength and conductivity of the gelatin hydrogel.Meanwhile,the Hofmeister effect induced by(NH_(4))_(2)SO_(4) strengthened the hydrogel network,and the introduction of betaine further enhanced its anti-freezing and moisture-retention properties.The optimized GPC hydrogel exhibited a high tensile strength of 1.02 MPa,conductivity of 1.5 S·m^(-1),and stable performance at temperatures down to-50℃.Furthermore,it was successfully assembled into a wearable strain sensor for real-time human motion monitoring,and as an electrode layer in a flexible triboelectric nanogenerator(TENG),enabling biomechanical energy harvesting and self-powered sensing.This work provides a promising strategy for developing sustainable,multifu nctional hydrogels for next-generation weara ble electronics.展开更多
The recovery of ionic liquids(ILs)has attracted growing attention as an indispensable process in“green”industrial applications.Forward osmosis(FO)has proven to be a sustainable method for concentrating the very dilu...The recovery of ionic liquids(ILs)has attracted growing attention as an indispensable process in“green”industrial applications.Forward osmosis(FO)has proven to be a sustainable method for concentrating the very dilute aqueous solutions of ILs at ambient temperature,in which semi-permeable membranes play a vital role in determining the recovery efficiency.Herein,we use interfacial polymerization method to prepare thin-film composite membranes consisting of polyamide skin layer and electrospun nanofibrous substrate with tunable water permeability and IL selectivity for osmotic enrichment of imidazolium ILs from their dilute aqueous solutions through FO process.The resulting FO membrane shows a compact polyamide layer with a thickness of 30-200 nm,guranteeing a high selectivity to ILs and water.Meanwhile,the nanofibrous substrate with large and interconnect pores as well as low tortuosity,providing mechanical and permeable support for the composite membranes.IL structure influences the osmotic pressure difference as well as the interactions with polyamide layer of the membrane and thus determines the whole concentration process.First,the alkyl chain growth augments the osmosis pressure difference between the ILs solution and draw solution,resulting in an enhancement in driving force of water osmosis and IL enrichment.Moreover,alkyl length aggravates external concentration polarization caused by the enhanced adsorption of ILs onto the skin layer via electrostatic and alkyl-πinteractions.Meanwhile,such adsorbed ILs further enhance the IL retention but decrease the reverse salt diffusion.Therefore,imidazolium ILs with varied alkyl lengths are ultimately enriched with a 100-fold increase in concentration from their dilute aqueous solutions with high IL/NaCl rejection and low IL loss.Remarkably,the final concentration of IL with longest alkyl length reaches the highest(6.4 mol·L^(-1)).This work provides the insights in respect to material preparation and process amelioration for IL recovery with high scalability at mild conditions.展开更多
The demand for anisotropic aerogels with excellent comprehensive properties in cutting-edge fields such as aerospace is growing.Based on the above background,a novel heterocyclic para-aramid nanofiber/reduced graphene...The demand for anisotropic aerogels with excellent comprehensive properties in cutting-edge fields such as aerospace is growing.Based on the above background,a novel heterocyclic para-aramid nanofiber/reduced graphene oxide(HPAN/rGO)composite aerogel was prepared by combining electrospinning and unidirectional freeze-drying.The anisotropic HPAN/rGO composite aerogel exhibited a honeycomb morphology in the direction perpendicular to the growth of ice crystals,and a through-well structure of directed microchannels in the direction parallel to the temperature gradient.By varying the mass ratio of HPAN/rGO,a composite aerogel with an ultra-low density of 5.34-7.81 mg·cm^(-3) and an ultra-high porosity of 98%-99%was obtained.Benefiting from the anisotropic structure,the radial and axial thermal conductivities of HPAN/rGO-3 composite aerogel were 29.37 and 44.35 mW·m^(-1)·K^(-1),respectively.A combination of software simulation and experiments was used to analyze the effect of anisotropic structures on the thermal insulation properties of aerogels.Moreover,due to the intrinsic self-extinguishing properties of heterocyclic para-aramid and the protection of the graphene carbon layer,the composite aerogel also exhibits excellent flame retardancy properties,and its total heat release rate(THR)was only 5.8 kJ·g^(-1),which is far superior to many reported aerogels.Therefore,ultralight anisotropic HPAN/rGO composite aerogels with excellent high-temperature thermal insulation and flame retardancy properties have broad application prospects in complex environments such as aerospace.展开更多
Tendon and ligament injuries represent a major orthopedic challenge with limited effective regenerative options.In an original research study by Yang et al de-veloped a tissue engineering approach combining aligned na...Tendon and ligament injuries represent a major orthopedic challenge with limited effective regenerative options.In an original research study by Yang et al de-veloped a tissue engineering approach combining aligned nanofiber scaffolds with cyclic uniaxial stretching to promote tenogenic differentiation in bone marrow-derived mesenchymal stem cells.Their results provide critical insight into how structural and mechanical cues can synergize to generate ligament-like tissue in vitro.This editorial contextualizes their findings within the broader field of ligament regeneration and highlights the translational potential of their strategy.展开更多
Bimetallic oxides are promising electrocatalysts due to their rich composition,facile synthesis,and favorable stability under oxidizing conditions.This paper innovatively proposes a strategy aimed at constructing a on...Bimetallic oxides are promising electrocatalysts due to their rich composition,facile synthesis,and favorable stability under oxidizing conditions.This paper innovatively proposes a strategy aimed at constructing a one-dimensional heterostructure(Fe–NiO/NiMoO_(4) nanoparticles/nanofibers).The strategy commences with the meticulous treatment of NiMoO_(4) nanofibers,utilizing in situ etching techniques to induce the formation of Prussian Blue Analog compounds.In this process,[Fe(CN)_(6)]^(3-)anions react with the NiMoO_(4) host layer to form a steady NiFe PBA.Subsequently,the surface/interface reconstituted NiMoO_(4) nanofibers undergo direct oxidation,leading to a reconfiguration of the surface structure and the formation of a unique Fe–NiO/NiMoO_(4) one-dimensional heterostructure.The catalyst showed markedly enhanced electrocatalytic performance for the oxygen evolution reaction.Density functional theory results reveal that the incorporation of Fe as a dopant dramatically reduces the Gibbs free energy associated with the rate-determining step in the oxygen evolution reaction pathway.This pivotal transformation directly lowers the activation energy barrier,thereby significantly enhancing electron transfer efficiency.展开更多
Solid electrolytes are the most promising candidate for replacing liquid electrolytes due to their safetyand chemical stability advantages. However, a single inorganic or organic solid electrolyte cannot meetthe requi...Solid electrolytes are the most promising candidate for replacing liquid electrolytes due to their safetyand chemical stability advantages. However, a single inorganic or organic solid electrolyte cannot meetthe requirements of commercial all-solid-state batteries (ASSBs), which motivates the composite polymerelectrolyte (CPE). Herein, a CPE of boron nitride nanofiber (BNNF) with a high specific surface area, richpore structure, and poly (ethylene oxide) (PEO) are reported. Anions strongly adsorb on the surface ofBNNF through electrostatic interactions based on oxygen vacancies, promoting the dissociation of lithiumsalts at the two-phase interface. The three-dimensional (3D) BNNF network provides three advantagesin the CPE, including (i) improving ionic conductivity through strong interaction between polymers andfillers, (ii) improving mechanical properties through weaving a robust skeleton, and (iii) improving stability through a rapid and uniform thermal dispersion pathway. Therefore, the CPE with BNNF delivers highionic conduction of 4.21 × 10^(−4) S cm^(−1) at 60 ℃ and excellent cycling stability (plating/stripping cyclesfor 2000 h with a low overpotential of ∼40 mV), which results in excellent electrochemical performanceof LiFePO_(4) (LFP) full cell assembled with CPE-5BNNF-1300 (152.7 mAh g^(−1) after 200 cycles at 0.5 C, and134.8 mAh g^(−1) at 2.0 C). Furthermore, when matched with high-voltage LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2) (NCM622), italso exhibits an outstanding rate capacity of 120.4 mAh g^(−1) at 1.0 C. This work provides insight into theBNNF composite electrolyte and promotes its practical application for ASSBs.展开更多
The organic fluorescent probes were widely explored for specific detection of chemical nerve agent simulants.However,the fluorescence quenching,long-time response,and limitation of detection further impeded their prac...The organic fluorescent probes were widely explored for specific detection of chemical nerve agent simulants.However,the fluorescence quenching,long-time response,and limitation of detection further impeded their practical applications.Herein,the fluorescent nanofiber chitosan-1 was prepared through the modification of chitosan with 1,8-naphthalimide as fluorophore and piperazine as the detection segment.The high specific surface of fluorescent nanofiber chitosan-1 showed ultrasensitive and selective detection of diethyl chlorophosphate(DCP)in solution and vapor.The satisfied linear relationship between the fluorescent intensity and the concentration of DCP ranging from 0μmol/L to 100μmol/L was obtained.The limitation of detection was measured as low as 2.2 nmol/L within 30 s.The sensing mechanism was explored through the photoinduced electron transfer(PET)mechanism which was confirmed by ^(1)H,^(31)P NMR,and mass spectra(MS).The ultrasensitive detection of nanofibers may provide valuable insights for enhancing the sensing performance in visually detecting chemical nerve agents.展开更多
In recent years,polymer-based triboelectric nanogenerators(TENGs)have been increasingly applied in the field of flexible wearable electronics.However,the lack of flame retardancy of existing TENGs greatly lim-its thei...In recent years,polymer-based triboelectric nanogenerators(TENGs)have been increasingly applied in the field of flexible wearable electronics.However,the lack of flame retardancy of existing TENGs greatly lim-its their applications in extreme circumstances.Herein,an ultra-thin and highly flexible aramid nanofiber(ANF)/MXene(Ti_(3)C_(2)T_(x))/Ni nanochain composite paper was prepared through vacuum-assisted filtration and freeze-drying technology.Owing to the synergistic effect between ANF and MXene,the composite paper not only possessed excellent mechanical properties,which were able to withstand over 10,000 times its own weight,but also exhibited outstanding flame-retardant and controllable Joule heating ca-pabilities.Moreover,the mechanical energy capture characteristics of the composite paper-based TENG were evaluated,resulting in the open-circuit voltage(55.6 V),short-circuit current(0.62μA),and trans-ferred charge quantity(25μC).It also could enable self-powering as a wearable electronic device with an instantaneous power of 15.6μW at the optimal external resistance of 10 MΩ.This work is intended to set TENG as safe energy harvesting devices for reducing fire hazards,and will provide a new strategy to broaden the application ranges of TENG.展开更多
Polymer-based aerogels are emerging as promising candidates for lightweight and high performance electromagnetic(EM)wave absorption materials.In this study,an ultralight and rigid poly(p-phenylene benzobisoxazole)nano...Polymer-based aerogels are emerging as promising candidates for lightweight and high performance electromagnetic(EM)wave absorption materials.In this study,an ultralight and rigid poly(p-phenylene benzobisoxazole)nanofiber(PNF)based composite aerogel with excellent EM wave absorption performance was fabricated with cobalt-nickel alloy(CoNi)nanoparticles and carbon nanotubes(CNTs)as magnetic and conductive fillers,respectively.A CNT/PNF composite aerogel was first prepared through a sol-gel and freeze-drying method,and then CoNi nanoparticles were introduced therein through hydrothermal reaction and thermal annealing to obtain the CoNi/CNT/PNF aerogel.CNTs and PNFs were interwoven and constructed a three-dimensional conductive/magnetic cage-like skeleton structure decorating with magnetic CoNi nanoparticles.The cage-like skeleton structure allowed the dissipation of EM waves through multiple mechanisms encompassing conduction loss,magnetic loss,multiple reflection,scattering,and absorption.When its thickness was 4 mm,the CoNi/CNT/PNF aerogel showed a minimal reflection loss of-44.7 dB(at 6.88 GHz),and its broad effective absorption bandwidth covered the entire X-band and Ku-band and most of the C-band(12.32 GHz,from 5.68 GHz to 18 GHz).In addition,the rigid aerogel exhibited an ultralow density(0.107 g/cm^(3)),excellent thermal insulation,and flame retardancy,demonstrating its potential application as a high-performance EM wave absorption material in the fields of aerospace and national defense.展开更多
基金supported by the Natural Science Foundation of Tianjin(Nos.18JCQNJC72400 and 22JCQNJC01510).
文摘Tetracycline(TC)is a broad-spectrum antibiotic,and its residues in the environment and food are harmful to human health.Therefore,it is essential to rapidly,sensitively,and conveniently detect TC.In this work,we developed a portable silicon nanoparticles chelated Europium(Ⅲ)-based polyacrylonitrile(Eu-SiNPs/PAN)nanofiber membrane for rapid,sensitive,and convenient detection of TC.The Eu-SiNPs were synthesized with a facile one-pot method.The Eu-SiNPs/PAN nanofiber membrane was fabricated by electrospinning,combining Eu-SiNPs and PAN with three-dimensional porous membrane structures and UV resistance.Both the Eu-SiNPs and the Eu-SiNPs/PAN nanofiber membranes have good selectivity and anti-interference ability towards TC.The combined merits of rapid response,long storage life,easy portability,and naked-eye recognition of TC make the Eu-SiNPs/PAN nanofiber membrane a promising material for convenient TC detection applications.The practicability of these nanofiber membranes was further verified by detecting TC in real samples,such as lake water,drinking water and honey,and achieved quantitative detection.
基金financially supported by the National Natural Science Foundation of China (No. 22225902, U22A20436, 22209185)National Key Research&Development Program of China (2022YFE0115900, 2023YFA1507101, 2021YFA1501500)+1 种基金the Self-deployment Project Research Program of Haixi Institutes,Chinese Academy of Sciences (No. CXZX-2022-GH04, CXZX-2023-JQ08)Science and Technology Program of Fuzhou (2023-P-009)。
文摘Manganese-based chalcogenides have significant potential as anodes for sodium-ion batteries(SIBs) due to their high theoretical specific capacity, abundant natural reserves, and environmental friendliness. However, their application is hindered by poor cycling stability, resulting from severe volume changes during cycling and slow reaction kinetics due to their complex crystal structure. Here, an efficient and straightforward strategy was employed to in-situ encapsulate single-phase porous nanocubic MnS_(0.5)Se_(0.5) into carbon nanofibers using electrospinning and the hard template method, thus forming a necklace-like porous MnS_(0.5)Se_(0.5)-carbon nanofiber composite(MnS_(0.5)Se_(0.5)@N-CNF). The introduction of Se significantly impacts both the composition and microstructure of MnS_(0.5)Se_(0.5), including lattice distortion that generates additional defects, optimization of chemical bonds, and a nano-spatially confined design. In situ/ex-situ characterization and density functional theory calculations verified that this MnS_(0.5)Se_(0.5)@N-CNF allevi- ates the volume expansion and facilitates the transfer of Na+/electron. As expected, MnS_(0.5)Se_(0.5)@N-CNF anode demonstrates excellent sodium storage performance, characterized by high initial Coulombic efficiency(90.8%), high-rate capability(370.5 m Ahg^(-1) at 10 Ag^(-1)) and long durability(over 5000 cycles at 5 Ag^(-1)). The MnS_(0.5)Se_(0.5)@N-CNF//NVP@C full cell, assembled with MnS_(0.5)Se_(0.5)@N-CNF as anode and Na_(3)V_(2)(PO_4)_(3)@C as cathode, exhibits a high energy density of 254 Wh kg^(-1) can be provided. This work presents a novel strategy to optimize the design of anode materials through structural engineering and Se substitution, while also elucidating the underlying reaction mechanisms.
基金supported by the National Natural Science Foundation of China(No.11904208the Project of Shandong Province Higher Educational Science and Technology Program(No.J18KB098).
文摘The development of efficient,cost-effective catalysts for the oxygen reduction reaction(ORR)is crucial for advancing zinc-air batteries(ZABs).This study presents Fe_(4)N nanoparticles embedded in N-doped carbon nanofibers(Fe_(4)N@CNF-NH_(3))as a highly efficient ORR catalyst.The Fe_(4)N@CNF-NH_(3)catalyst was synthesized via electrospinning,followed by high-temperature annealing in an NH_(3)atmosphere.This electrospinning technique ensured the uniform dispersion of Fe_(4)N nanoparticles within the carbon nanofibers(CNFs),preventing agglomeration and enhancing the availability of active sites.Structural and morphological analyses confirmed the formation of Fe_(4)N nanoparticles with a lattice spacing of 0.213 nm,surrounded by graphitic carbon structures that significantly improved the material’s conductivity and stability.Electrochemical tests demonstrated that Fe_(4)N@CNF-NH_(3)exhibited superior ORR activity,with a half-wave potential of 0.904 V,surpassing that of commercial Pt/C catalysts.This enhanced performance is attributed to the synergistic effects of Fe_(4)N nanoparticles and the conductive carbon framework,which facilitated efficient charge and mass transfer during the ORR process.Density functional theory calculations further revealed that the introduction of CNFs positively shifted the d-band center of Fe atoms,optimizing oxygen intermediate adsorption and lowering energy barriers for ORR.The practical applicability of Fe_(4)N@CNF-NH_(3)was validated through the assembly of both liquid-state and solid-state ZABs,which exhibited excellent cycling stability,high power density,and superior discharge voltage.This study offers a promising strategy for developing highly active,low-cost ORR catalysts and advances the potential for the commercialization of ZABs.
基金supported by the National Natural Science Foundation of China(No.22278260)the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry(No.KFKT2021-14)Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology(No.KFKT2021-14).
文摘Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the smooth surface and chemical inertness of aramid fibers. Herein, AP are modified via the nacre-mimetic structure composed of aramid nanofibers (ANF) and carbonylated basalt nanosheets (CBSNs). This is achieved by impregnating AP into an ANF-CBSNs (A-C) suspension containing a 3D ANF framework as the matrix and 2D CBSNs as fillers. The resultant biomimetic composite papers (AP/A-C composite papers) exhibit a layered “brick-and-mortar” structure, demonstrating superior mechanical and electrical insulating properties. Notably, the tensile strength and breakdown strength of AP/A-C5 composite papers reach 39.69 MPa and 22.04 kV mm^(−1), respectively, representing a 155 % and 85 % increase compared to those of the control AP. These impressive properties are accompanied with excellent volume resistivity, exceptional dielectric properties, impressive folding endurance, outstanding heat insulation, and remarkable flame retardance. The nacre-inspired strategy offers an effective approach for producing highly promising electrical insulating papers for advanced electrical equipment.
基金National Natural Science Foundation of China,Grant/Award Numbers:52173091,62101391。
文摘Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells.
基金Natural Science Foundation of Shanghai(General Program,22ZR1409500)China Postdoctoral Science Foundation(23M742317,GZB240446)+3 种基金Shanghai Science and Technology Innovation Action Plan(22S31905500)Medical Engineering Fund of Fudan University(yg2021-032)Fundamental Research Project of CNTAC(J202104)Program of Introducing Talents of Discipline to Universities(BP0719035)。
文摘Blister wounds are featured with over-generated wound exudate and extensive skin peeling,call for breathable temporary skin with effective exudate management,and function as an extracellular matrix to accelerate regeneration of wound skin.Traditional extracellular matrix(ECM)mimicked nanofibrous 3D scaffold and corresponding hydrogel composites suffer from poor mechanical strength,and the wound exudate management behavior is seldom studied.Herein,we proposed the strategy to enhance the mechanical properties of a 3D nanofiber scaffold via constructing a long nanofiber(NF)and sodium alginate(SA)aerogel interpenetrated architecture(NF/SA).The as-prepared scaffold was then evaluated as temporary skin for a full-thickness defect wound.After absorption of blister fluid,the aerogel transferred into a hydrogel and imparted a wet wound care environment with a water-vapor transmission rate of(6001.90±522.04)g/(m^(2)·24 h),and Young s modulus of(2.97±0.38)MPa.The exudate was continuously refreshed by a directed and dynamic pump,followed by volatilization driven by Brownian motion.Meanwhile,the NF/SA scaffold exhibited decent compatibility with blister fluid.The basic fibroblast growth factor(bFGF)-loaded NF/SA improved the wound healing rate by 36.46%on Day 3 and 15.34%on Day 7 in the full-thickness defect wound model.
文摘High-temperature piezoelectric sen-sors are very important in severe environments such as fire safety,aerospace and oil drills,however,most current sensors are not heat res-istant(<300℃)and are fragile,which limits their use,especially in high-temperature environ-ments.A high-temperature resistant flexible piezoelectric film based on graphene oxide(GO)/polyacrylonitrile(PAN)composites was prepared by electrospinning and thermal treat-ment.It was packed into a micro-device,which could work continuously at 500℃.The intro-duction of GO significantly increased the mechanical properties of the PAN nanofibers because the oxygen-containing func-tional groups(electronegative groups)on the surface of the GO initiated a nucleophilic attack on the PAN molecule during heat treatment,enabling the GO to initiate the cyclization of the PAN at lower heat-treatment temperatures.In addition,the abund-ant oxygen-containing functional groups on GO acted as pro-oxidants to hasten the oxidation of PAN during heat treatment.The effects of GO content and heat treatment temperature on the properties of the nanofiber films were investigated.A GO/PAN nanofiber piezoelectric sensor heat-treated at 300℃had a 9.10 V and 2.25μA peak output,which are respectively 101.3%and 78.6%higher than those of the untreated films.Cyclic testing over 5000 cycles at 350℃confirmed the stable out-put performance of the GO/PAN nanofiber piezoelectric sensor.Furthermore,a sensor heat-treated at 400℃had a sensitivity of 1.7 V/N,which is 83.5%higher than that of an untreated one.The results show that the prepared GO/PAN nanofiber piezo-electric sensor combines high temperature resistance,high flexibility,stability and high sensitivity,and may have broad applic-ations in high temperature environments such as the aerospace and petroleum industries.
文摘The need for bi-functional catalysts that facilit-ate both the oxygen reduction(ORR)and carbon dioxide re-duction(CO_(2)RR)reactions arises from their potential to help solve the critical problems of carbon neutrality and renew-able energy conversion.However,there are few reports on the development of bi-functional catalysts for zinc-air bat-tery-driven CO_(2)RR devices.We introduce a novel approach for synthesizing Fe_(2)N/Fe_(3)C species embedded in nitrogen-doped carbon nanofibers by electrospinning a solution of Hemin and polyacrylonitrile in N,N-dimethylformamide.The material has an exceptional catalytic performance,with a half-wave potential of 0.91 V versus RHE for the ORR and values of over 90%for both the selectivity and Faradaic efficiency for the CO_(2)RR.The high catalytic performances are attrib-uted to the strong coupling between the Fe_(3)C/Fe_(2)N heterostructure and the Fe-N-C sites in the nitrogen-doped carbon nan-ofibers.Notably,both Fe_(3)C and Fe_(2)N play distinct roles in both the ORR and CO_(2)RR.This investigation indicates a way for designing advanced carbon-based bi-functional catalysts for use in this field.
基金Natural Science Foundation of China(22134005,22204011)Chongqing Talents Program for Outstanding Scientists(cstc2021ycjh-bgzxm0179)。
文摘Adsorption as an effective technique for the remediation of wastewater has been widely used in industrial wastewater treatment due to the advantage of cost-effectiveness,availability of the adsorbent and ease of operation.However,the low adsorption capacity of the reported adsorbents is still a challenge for wastewater treatment with highefficiency.Here,we developed a super adsorbent(SUA-1),which was a kind of porous carbon nanofibers derived from a composite of PAN-based electrospinning and ZIF-8(PAN/ZIF-8)via simple heat treatment process.The asprepared SUA showed an ultra-high adsorption capacity for adsorbing methyl blue(MB)at nearly three times its own weight,as high as 2998.18 mg/g.A series tests demonstrated that the pore-making effect of ZIF-8 during heat treatment process endowed high BET surface area and generated ZnO components as chemical adsorption center.Under the synergistic effect of bonding and non-bonding forces including ionic bond,electrostatic interaction,andπ-πinteraction,the adsorption capacity has been greatly improved.In view of promising efficiency,this work provides guidance and insights for the preparation of highly efficient adsorbents based on electrospinning derived porous carbon nanofibers.
基金support from the National Natural Science Foundation of China(Nos.42372328,U23B2091,52478253,and 52374147)Natural Science Foundation of Jiangsu Province,China(No.BK20240209).
文摘To address the dual challenges of resource utilization of mining solid waste(e.g.,coal gangue)and performance enhancement of cemented rockfill,this study systematically investigates the mechanisms of ultrasonic dispersion time and polycarboxylate superplasti-cizer(PCE)on the properties of cellulose nanofiber(CNF)-modified cemented rockfill.A series of comparative experiments were de-signed with varying ultrasonic dispersion times(0-60 min)and PCE dosages(0.1wt%-0.4wt%).Through mechanical testing,hydration product analysis,and microstructural characterization,the study revealed the advantages of PCE in promoting CNF dispersion to enhance the engineering applicability of cemented rockfill.The results demonstrate that:(1)Ultrasonic dispersion for 30 min increases the com-pressive strength by 37.7%compared to the untreated group;however,excessive ultrasonication(60 min)induces hydrolysis of CNF,re-leasing reducing sugars that retard hydration.(2)PCE facilitates CNF dispersion,achieving a 29.1%increase in compressive strength at a dosage of 0.4wt%,while simultaneously improving hydration products and microstructural development.(3)While ultrasonic dispersion yields slightly higher strength improvements,PCE demonstrates superior cost-effectiveness and operational convenience,rendering it more viable for industrial adoption.This study provides a theoretical foundation for the nano-enhanced modification of cemented rockfill,offering new insights into the recycling of solid waste and the development of high-performance materials.
基金supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea(NRF2023R1A2C2004191)supported by Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by Ministry of Education(grant No.2022R1A6C101B738).
文摘Among their several unique properties,the high electrical conductivity and mechanical strength of carbon nanofibers make them suitable for applications such as catalyst support for fuel cells,flexible electrode materials for secondary batteries,and sensors.However,their performance requires improvement for practical applications.Several methods have been pursued to achieve this,such as growing carbon nanotubes from carbon nanofibers;however,the transition metal catalyst used to grow carbon nanotubes causes problems,including side reactions.This study attempts to address this issue by growing numerous branched carbon nanofibers from the main carbon nanofibers using alkali metals.Excellent electrical conductivity is achieved by growing densely branched carbon nanofibers.Consequently,a current collector,binder,and conductive material-free anode material is realized,exhibiting excellent electrochemical performance compared with existing carbon nanofibers.The proposed method is expected to be a powerful tool for secondary batteries and have broad applicability to various fields.
基金financially supported by the PhD research startup foundation of China West Normal University(No.22kE038)。
文摘Conductive hydrogels derived from natural polymers have attracted increasing attention in wearable electronics due to their inherent biocompatibility and sustainability.However,their poor mechanical strength,limited conductivity and unsatisfactory environmental adaptability remain significant challenges fo r practical applications.In this study,we report a high-performance gelatin-based conductive hydrogel(GPC)reinforced with polypyrrole-decorated cellulose nanofibers(PPy@CNF)and enhanced by a zwitterionic betaine/(NH_(4))_(2)SO_(4) solution.The PPy@CNF hybrid nanofillers were synthesized via in situ oxidative polymerization,enabling homogeneous dispersion of PPy along the CNF su rface.The incorporation of PPy@CNF significantly improved both mechanical strength and conductivity of the gelatin hydrogel.Meanwhile,the Hofmeister effect induced by(NH_(4))_(2)SO_(4) strengthened the hydrogel network,and the introduction of betaine further enhanced its anti-freezing and moisture-retention properties.The optimized GPC hydrogel exhibited a high tensile strength of 1.02 MPa,conductivity of 1.5 S·m^(-1),and stable performance at temperatures down to-50℃.Furthermore,it was successfully assembled into a wearable strain sensor for real-time human motion monitoring,and as an electrode layer in a flexible triboelectric nanogenerator(TENG),enabling biomechanical energy harvesting and self-powered sensing.This work provides a promising strategy for developing sustainable,multifu nctional hydrogels for next-generation weara ble electronics.
基金supported by the National Natural Science Foundation of China(No.52173095)the MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Zhejiang University(No.2023MSF05)。
文摘The recovery of ionic liquids(ILs)has attracted growing attention as an indispensable process in“green”industrial applications.Forward osmosis(FO)has proven to be a sustainable method for concentrating the very dilute aqueous solutions of ILs at ambient temperature,in which semi-permeable membranes play a vital role in determining the recovery efficiency.Herein,we use interfacial polymerization method to prepare thin-film composite membranes consisting of polyamide skin layer and electrospun nanofibrous substrate with tunable water permeability and IL selectivity for osmotic enrichment of imidazolium ILs from their dilute aqueous solutions through FO process.The resulting FO membrane shows a compact polyamide layer with a thickness of 30-200 nm,guranteeing a high selectivity to ILs and water.Meanwhile,the nanofibrous substrate with large and interconnect pores as well as low tortuosity,providing mechanical and permeable support for the composite membranes.IL structure influences the osmotic pressure difference as well as the interactions with polyamide layer of the membrane and thus determines the whole concentration process.First,the alkyl chain growth augments the osmosis pressure difference between the ILs solution and draw solution,resulting in an enhancement in driving force of water osmosis and IL enrichment.Moreover,alkyl length aggravates external concentration polarization caused by the enhanced adsorption of ILs onto the skin layer via electrostatic and alkyl-πinteractions.Meanwhile,such adsorbed ILs further enhance the IL retention but decrease the reverse salt diffusion.Therefore,imidazolium ILs with varied alkyl lengths are ultimately enriched with a 100-fold increase in concentration from their dilute aqueous solutions with high IL/NaCl rejection and low IL loss.Remarkably,the final concentration of IL with longest alkyl length reaches the highest(6.4 mol·L^(-1)).This work provides the insights in respect to material preparation and process amelioration for IL recovery with high scalability at mild conditions.
基金supported by the National Key R&D Program of China(No.2021YFB3700103).
文摘The demand for anisotropic aerogels with excellent comprehensive properties in cutting-edge fields such as aerospace is growing.Based on the above background,a novel heterocyclic para-aramid nanofiber/reduced graphene oxide(HPAN/rGO)composite aerogel was prepared by combining electrospinning and unidirectional freeze-drying.The anisotropic HPAN/rGO composite aerogel exhibited a honeycomb morphology in the direction perpendicular to the growth of ice crystals,and a through-well structure of directed microchannels in the direction parallel to the temperature gradient.By varying the mass ratio of HPAN/rGO,a composite aerogel with an ultra-low density of 5.34-7.81 mg·cm^(-3) and an ultra-high porosity of 98%-99%was obtained.Benefiting from the anisotropic structure,the radial and axial thermal conductivities of HPAN/rGO-3 composite aerogel were 29.37 and 44.35 mW·m^(-1)·K^(-1),respectively.A combination of software simulation and experiments was used to analyze the effect of anisotropic structures on the thermal insulation properties of aerogels.Moreover,due to the intrinsic self-extinguishing properties of heterocyclic para-aramid and the protection of the graphene carbon layer,the composite aerogel also exhibits excellent flame retardancy properties,and its total heat release rate(THR)was only 5.8 kJ·g^(-1),which is far superior to many reported aerogels.Therefore,ultralight anisotropic HPAN/rGO composite aerogels with excellent high-temperature thermal insulation and flame retardancy properties have broad application prospects in complex environments such as aerospace.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,No.NRF-2022R1I1A1A01068652.
文摘Tendon and ligament injuries represent a major orthopedic challenge with limited effective regenerative options.In an original research study by Yang et al de-veloped a tissue engineering approach combining aligned nanofiber scaffolds with cyclic uniaxial stretching to promote tenogenic differentiation in bone marrow-derived mesenchymal stem cells.Their results provide critical insight into how structural and mechanical cues can synergize to generate ligament-like tissue in vitro.This editorial contextualizes their findings within the broader field of ligament regeneration and highlights the translational potential of their strategy.
基金supported by the National Natural Science Foundation of China(52203257)Natural Science Foundation of Heilongjiang Province(YQ2022B008).
文摘Bimetallic oxides are promising electrocatalysts due to their rich composition,facile synthesis,and favorable stability under oxidizing conditions.This paper innovatively proposes a strategy aimed at constructing a one-dimensional heterostructure(Fe–NiO/NiMoO_(4) nanoparticles/nanofibers).The strategy commences with the meticulous treatment of NiMoO_(4) nanofibers,utilizing in situ etching techniques to induce the formation of Prussian Blue Analog compounds.In this process,[Fe(CN)_(6)]^(3-)anions react with the NiMoO_(4) host layer to form a steady NiFe PBA.Subsequently,the surface/interface reconstituted NiMoO_(4) nanofibers undergo direct oxidation,leading to a reconfiguration of the surface structure and the formation of a unique Fe–NiO/NiMoO_(4) one-dimensional heterostructure.The catalyst showed markedly enhanced electrocatalytic performance for the oxygen evolution reaction.Density functional theory results reveal that the incorporation of Fe as a dopant dramatically reduces the Gibbs free energy associated with the rate-determining step in the oxygen evolution reaction pathway.This pivotal transformation directly lowers the activation energy barrier,thereby significantly enhancing electron transfer efficiency.
基金financially supported by the Science and Tech-nology Innovation Base Project(No.226Z3606G)the National Natural Science Foundation of China(No.51802073)+3 种基金the Hebei Province Graduate Student Innovation Ability Training Project(No.CXZZBS2023040)the Hebei Province Eighth Batch of“100 People Plan”Project(No.E2018050008)the Natural Science Foundation of Hebei Province(No.E2018202129)Hebei Key Laboratory of Boron Nitride and Nano Materials.
文摘Solid electrolytes are the most promising candidate for replacing liquid electrolytes due to their safetyand chemical stability advantages. However, a single inorganic or organic solid electrolyte cannot meetthe requirements of commercial all-solid-state batteries (ASSBs), which motivates the composite polymerelectrolyte (CPE). Herein, a CPE of boron nitride nanofiber (BNNF) with a high specific surface area, richpore structure, and poly (ethylene oxide) (PEO) are reported. Anions strongly adsorb on the surface ofBNNF through electrostatic interactions based on oxygen vacancies, promoting the dissociation of lithiumsalts at the two-phase interface. The three-dimensional (3D) BNNF network provides three advantagesin the CPE, including (i) improving ionic conductivity through strong interaction between polymers andfillers, (ii) improving mechanical properties through weaving a robust skeleton, and (iii) improving stability through a rapid and uniform thermal dispersion pathway. Therefore, the CPE with BNNF delivers highionic conduction of 4.21 × 10^(−4) S cm^(−1) at 60 ℃ and excellent cycling stability (plating/stripping cyclesfor 2000 h with a low overpotential of ∼40 mV), which results in excellent electrochemical performanceof LiFePO_(4) (LFP) full cell assembled with CPE-5BNNF-1300 (152.7 mAh g^(−1) after 200 cycles at 0.5 C, and134.8 mAh g^(−1) at 2.0 C). Furthermore, when matched with high-voltage LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2) (NCM622), italso exhibits an outstanding rate capacity of 120.4 mAh g^(−1) at 1.0 C. This work provides insight into theBNNF composite electrolyte and promotes its practical application for ASSBs.
基金financial support from the National Natural Science Foundation of China(Nos.82104065,32061143045,22276142,22474003)the National Key Research&Development Program(Nos.2019YFE0123100,2022YFE0199800)+2 种基金Anhui Provincial Natural Science Foundation(No.2208085MB38)Anhui Provincial Natural Science Foundation for Distinguished Young Scholars(No.2008085J11)Foundation of Education Department of Anhui Province(No.2022AH010023).
文摘The organic fluorescent probes were widely explored for specific detection of chemical nerve agent simulants.However,the fluorescence quenching,long-time response,and limitation of detection further impeded their practical applications.Herein,the fluorescent nanofiber chitosan-1 was prepared through the modification of chitosan with 1,8-naphthalimide as fluorophore and piperazine as the detection segment.The high specific surface of fluorescent nanofiber chitosan-1 showed ultrasensitive and selective detection of diethyl chlorophosphate(DCP)in solution and vapor.The satisfied linear relationship between the fluorescent intensity and the concentration of DCP ranging from 0μmol/L to 100μmol/L was obtained.The limitation of detection was measured as low as 2.2 nmol/L within 30 s.The sensing mechanism was explored through the photoinduced electron transfer(PET)mechanism which was confirmed by ^(1)H,^(31)P NMR,and mass spectra(MS).The ultrasensitive detection of nanofibers may provide valuable insights for enhancing the sensing performance in visually detecting chemical nerve agents.
基金financially supported by the Zhejiang Provin-cial Natural Science Foundation of China(No.LQ22E030016)the National Natural Science Foundation of China(Nos.52275137,51705467),the China Postdoctoral Science Foundation(No.2022M722831)+2 种基金the Postdoctoral Research Selected Funding Project of Zhejiang Province(No.ZJ2022063)the Self-Topic Fund of Zhe-jiang Normal University(No.2020ZS04)the National Key Re-search and Development Program of China(No.2018YFE0199100).
文摘In recent years,polymer-based triboelectric nanogenerators(TENGs)have been increasingly applied in the field of flexible wearable electronics.However,the lack of flame retardancy of existing TENGs greatly lim-its their applications in extreme circumstances.Herein,an ultra-thin and highly flexible aramid nanofiber(ANF)/MXene(Ti_(3)C_(2)T_(x))/Ni nanochain composite paper was prepared through vacuum-assisted filtration and freeze-drying technology.Owing to the synergistic effect between ANF and MXene,the composite paper not only possessed excellent mechanical properties,which were able to withstand over 10,000 times its own weight,but also exhibited outstanding flame-retardant and controllable Joule heating ca-pabilities.Moreover,the mechanical energy capture characteristics of the composite paper-based TENG were evaluated,resulting in the open-circuit voltage(55.6 V),short-circuit current(0.62μA),and trans-ferred charge quantity(25μC).It also could enable self-powering as a wearable electronic device with an instantaneous power of 15.6μW at the optimal external resistance of 10 MΩ.This work is intended to set TENG as safe energy harvesting devices for reducing fire hazards,and will provide a new strategy to broaden the application ranges of TENG.
基金the National Natural Science Foundation of China(52203100)Shaanxi Province Key Research and Development Plan Project(2024GX-YBXM-386)+3 种基金the Innovation Capability Support Program of Shaanxi(2024RS-CXTD-57)Natural Science Foundation of Chongqing,China(2023NSCQ-MSX2682)Undergraduate Innovation&Business Program of Northwestern Polytechnical University(S202310699322)the Analytical&Testing Center of Northwestern Polytechnical University for SEM tests performed in this work.
文摘Polymer-based aerogels are emerging as promising candidates for lightweight and high performance electromagnetic(EM)wave absorption materials.In this study,an ultralight and rigid poly(p-phenylene benzobisoxazole)nanofiber(PNF)based composite aerogel with excellent EM wave absorption performance was fabricated with cobalt-nickel alloy(CoNi)nanoparticles and carbon nanotubes(CNTs)as magnetic and conductive fillers,respectively.A CNT/PNF composite aerogel was first prepared through a sol-gel and freeze-drying method,and then CoNi nanoparticles were introduced therein through hydrothermal reaction and thermal annealing to obtain the CoNi/CNT/PNF aerogel.CNTs and PNFs were interwoven and constructed a three-dimensional conductive/magnetic cage-like skeleton structure decorating with magnetic CoNi nanoparticles.The cage-like skeleton structure allowed the dissipation of EM waves through multiple mechanisms encompassing conduction loss,magnetic loss,multiple reflection,scattering,and absorption.When its thickness was 4 mm,the CoNi/CNT/PNF aerogel showed a minimal reflection loss of-44.7 dB(at 6.88 GHz),and its broad effective absorption bandwidth covered the entire X-band and Ku-band and most of the C-band(12.32 GHz,from 5.68 GHz to 18 GHz).In addition,the rigid aerogel exhibited an ultralow density(0.107 g/cm^(3)),excellent thermal insulation,and flame retardancy,demonstrating its potential application as a high-performance EM wave absorption material in the fields of aerospace and national defense.