Glial fibrillary acidic protein(GFAP)is one of the discriminative biomarkers for diagnosing traumatic brain injury(TBI),and accurate determination of GFAP is clinically significant.In this study,a novel fluorescence i...Glial fibrillary acidic protein(GFAP)is one of the discriminative biomarkers for diagnosing traumatic brain injury(TBI),and accurate determination of GFAP is clinically significant.In this study,a novel fluorescence immunoassay system was designed.We encapsulated carbon dots with a high fluorescence quantum yield(QY=92.5%)inside silicon nanocapsules to serve as fluorescent markers.These markers were then integrated with the streptavidin(SA)-biotin biomagnification system and immunomagnetic separation technology for the sensitive detection of GFAP.Based on the signal cascade amplification effect of the silicon nanocapsules and SA-biotin,the fluorescence signal of the SA-biotin-modified immunofluorescence nanocapsules increased 3.6-fold compared to the carbon dot-based immunoprobe.The fluorescence immunoassay system was constructed for GFAP using SA-biotin-modified immunocapsules as the sensing probe and immunomagnetic nanoparticles as the immunorecognition probe.The fluorescence immunoassay system can specifically and ultra-sensitively quantify GFAP in blood samples,with a detection range of 10 pg/mL–10 ng/mL and detection limits of 3.2 pg/mL(serum)and 3.6 pg/mL(plasma).Moreover,the fluorescence immunoassay system exhibited prominent recoveries of 99.4%–100.4%(phosphate buffered saline),96%–102.6%(serum),and 93.2%–110.2%(plasma),with favorable specificity and excellent stabilization.The novel fluorescence immunoassay system provides a new approach to the clinical analysis of GFAP and may serve as a potential tool for screening and diagnosing TBI.展开更多
As a renovator in the field of gene editing,CRISPR-Cas9 has demonstrated immense potential for advancing next-generation gene therapy owing to its simplicity and precision.However,this potential faces significant chal...As a renovator in the field of gene editing,CRISPR-Cas9 has demonstrated immense potential for advancing next-generation gene therapy owing to its simplicity and precision.However,this potential faces significant challenges primarily stemming from the difficulty in efficiently delivering large-sized genome editing system(including Cas9 protein and sgRNA)into targeted cells and spatiotemporally controlling their activity in vitro and in vivo.Therefore,the development of CRISPR/Cas9 nanovectors that integrate high loading capacity,efficient encapsulation and spatiotemporally-controlled release is highly desirable.Herein,we have engineered a near-infrared(NIR)light-activated upconversion-DNA nanocapsule for the remote control of CRISPR-Cas9 genome editing.The light-responsive upconversion-DNA nanocapsules consist of macroporous silica(mSiO_(2))coated upconversion nanoparticles(UCNPs)and photocleavable onitrobenzyl-phosphate-modified DNA shells.The UCNPs act as a“nanotransducers”to convert NIR light(980 nm)into local ultraviolet light,thereby facilitating the cleavage of photosensitive DNA nanocapsules and enabling on-demand release of CRISPR-Cas9 encapsuled in the macroporous silica.Furthermore,by formulating a sgRNA targeted to a tumor gene(polo-like kinase-1,PLK-1),the CRISPR-Cas9 loaded UCNPDNA nanocapsules(crUCNP-DNA nanocapsules)have effectively suppressed the proliferation of tumor cells through NIR light-activated gene editing both in vitro and in vivo.Overall,this UCNP-DNA nanocapsule holds tremendous potential for CRISPR-Cas9 delivery and remote-controlled gene editing in deep tissues,as well as the treatment of diverse diseases.展开更多
Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate sin...Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate single-domain size which gives rise to natural resonance in 2–18 GHz.The addition of MnO2 confines degree of graphitization catalyzed by iron and contributes to the formation of amorphous carbon.The heterogeneous materials composed of crystalline–amorphous structures disperse evenly and its density is significantly reduced on account of porous properties.Meanwhile,adjustable dielectric loss is achieved by interrupting Fe core aggregation and stacking graphene conductive network.The dielectric loss synergistically with magnetic loss endows the FMCA enhanced absorption.The optimal reflection loss(RL)is up to−45 dB,and the effective bandwidth(RL<−10 dB)is 5.0 GHz with 2.0 mm thickness.The proposed confinement strategy not only lays the foundation for designing high-performance microwave absorber,but also offers a general duty synthesis method for heterogeneous crystalline–amorphous composites with tunable composition in other fields.展开更多
The structure, magnetic and microwave-absorption properties of graphite-coated (Fe, Ni) alloy nanocapsules, synthesized by the arc-discharge method, have been studied. High-resolution transmission electron microscop...The structure, magnetic and microwave-absorption properties of graphite-coated (Fe, Ni) alloy nanocapsules, synthesized by the arc-discharge method, have been studied. High-resolution transmission electron microscopy shows that the nanocapsules have a core/shell structure with (Fe, Ni) alloy as the core and graphite as the shell. All (Fe, Ni) alloy nanocapsules/paraffin composites show good microwave-absorption properties. The optimal reflection loss (RL) was found for (Fe70Ni30)/C nanocapsules/paraffin composites, being -47.84 dB at 14.6 GHz for an absorber thickness of 1.99 mm, while the RL values exceeding -10 dB were found in the 12.4– 17.4 GHz range, which almost covers the Ku band (12.4–18 GHz). For (Fe70Ni30)/C nanocapsules/paraffin composites, RL values can exceed -10 dB in the 11.4–18 GHz range with an absorber thickness of 1.91 mm, which cover the whole Ku band.展开更多
Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hi...Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hindered by sluggish kinetics and large volume expansion. Herein, N/S co-doped carbon nanocapsule (NSCN) is constructed for superior K+ storage. The NSCN possesses 3D nanocapsule framework with abundant meso/macropores, which guarantees structural robustness and accelerates ions/electrons transportation. The high-level N/S co-doping in carbon matrix not only generates ample defects and active sites for K+ adsorption, but also expands interlayer distance for facile K+ intercalation/deintercalation. As a result, the NSCN electrode delivers a high reversible capacity (408 mAh g^(−1) at 0.05 A g^(−1)), outstanding rate capability (149 mAh g^(−1) at 5 A g^(−1)) and favorable cycle stability (150m Ah g^(−1) at 2 A g^(−1) after 2000 cycles). Ex situ TEM, Raman and XPS measurements demonstrate the excellent stability and reversibility of NSCN electrode during potassiation/depotassiation process. This work provides inspiration for the optimization of energy storage materials by structure and doping engineering.展开更多
A robust solid-electrolyte interphase(SEI)enabled by electrolyte additive is a promising approach to stabilize Li anode and improve Li cycling efficiency.However,the self-sacrificial nature of SEI forming additives li...A robust solid-electrolyte interphase(SEI)enabled by electrolyte additive is a promising approach to stabilize Li anode and improve Li cycling efficiency.However,the self-sacrificial nature of SEI forming additives limits their capability to stabilize Li anode for long-term cycling.Herein,we demonstrate nanocapsules made from metal–organic frameworks for sustained release of LiNO3 as surface passivation additive in commercial carbonate-based electrolyte.The nanocapsules can offer over 10 times more LiNO3 than the solubility of LiNO3.Continuous supply of LiNO3 by nanocapsules forms a nitride-rich SEI layer on Li anode and persistently remedies SEI during prolonged cycling.As a result,lifespan of thin Li anode in 50μm,which experiences drastic volume change and repeated SEI formation during cycling,has been notably improved.By pairing with an industry-level thick LiCoO2 cathode,practical Li-metal full cell demonstrates a remarkable capacity retention of 90%after 240 cycles,in contrast to fast capacity drop after 60 cycles in LiNO3 saturated electrolyte.展开更多
The aroma sustained-release cotton fabric was prepared by finishing rose fragrance nanocapsules directly on cotton.The structure and properties of nanocapsules were demonstrated by transmission electron microscope(TEM...The aroma sustained-release cotton fabric was prepared by finishing rose fragrance nanocapsules directly on cotton.The structure and properties of nanocapsules were demonstrated by transmission electron microscope(TEM),dynamic light scattering(DLS),fourier transform infrared spectrometer(FTIR),X-ray diffraction (XRD),gas chromatography-mass spectrometry(GC-MS)and electronic nose.The results showed that the spherical nanocapsule dispersed evenly and the average diameter kept 51.4 nm.The existence of COO peak(1741 cm? 1)in the FTIR curve of the finished cotton fabric and the decrease of crystallinity demonstrated that rose fragrance nanocapsules have been incorporated into the cotton fabrics.The washing resistance of the cotton fabrics finished by 51.4 nm nanocapsules was much better than that by rose fragrance alone.Besides,the loss of fragrance from the cotton fabrics finished by 51.4 nm nanocapsules was obviously lower than that by 532 nm nanocapsules and rose fragrance.The smaller the nanocapsule size,the better the sustained release property.Electronic nose analysis also displayed that the aroma released from the cotton fabrics finished by nanocapsules after washing has no obvious variety in contrast to that without washing.The cotton fabrics finished by nanocapsules has the excellent sustained release property.展开更多
Fragranced products are wildly used in our daily life. However, their storage, application and quality are severely influenced by their strong volatility. In order to overcome these natural defects of fragrances,fragr...Fragranced products are wildly used in our daily life. However, their storage, application and quality are severely influenced by their strong volatility. In order to overcome these natural defects of fragrances,fragrance encapsulation approaches have been developed recently. In this study, a mild, simple and lowcost method of fragrance encapsulation was invented. Liposomes composed of soya lecithin/DSPEPEG2000/PLGA were prepared to encapsulate lily fragrance(LF). And these nanosized fragrance products was named LF-NPs. The hydrodynamic diameters of LF-NPs were approximately 100 nm and their encapsulation efficiency was up to 21.9%. Besides, LF-NPs could also prolong the release time of lily fragrance. Finally, the cytotoxicity tests indicated that LF-NPs offered biocompatibility. Therefore, LF-NPs were expected to have application prospects.展开更多
The novel graphitic nanomaterial of metal graphitic nanocapsules(MGNs) with superior stability, unique optical properties and biocompatibility possess great potential in biomedical and bioanalytical applications. The ...The novel graphitic nanomaterial of metal graphitic nanocapsules(MGNs) with superior stability, unique optical properties and biocompatibility possess great potential in biomedical and bioanalytical applications. The graphitic shell can quench the background fluorescence interference from external environments via a fluorescence resonance energy transfer(FRET) process and even avoid unnecessary reactions catalyzed by inner metal core. The graphitic shell with several characteristic Raman bands itself can act as Raman signal probe or internal standard(IS), especially the 2D-band within the cellular Raman-silent region helps to reduce the interference signals from external conditions. The present context attempts to give a comprehensive overview about the preparation and unique properties of MGNs as well as their applications in SERS biodetection and bioimaging.展开更多
Structure and magnetic properties of Ni nanoparticles and Ni(C) nanocapsules were studied. The carbon atoms hardly affect the lattice of Ni to form Ni-C solid solution or nickel carbides. The large thermal irreversibi...Structure and magnetic properties of Ni nanoparticles and Ni(C) nanocapsules were studied. The carbon atoms hardly affect the lattice of Ni to form Ni-C solid solution or nickel carbides. The large thermal irreversibility in zero-field-cooled and zero-field magnetization curves indicates magnetic blocking with a wide energy barrier. Saturation magnetization, remanent magnetization and coercivity of Ni(C) nanocapsules decrease with increasing temperature.展开更多
It has recently been reported that coal tar pitch(CTP)can be utilised as raw material for the production of graphene nanocapsules(GNCs)because it is formed by a great quantity of aromatic organic compounds(which promo...It has recently been reported that coal tar pitch(CTP)can be utilised as raw material for the production of graphene nanocapsules(GNCs)because it is formed by a great quantity of aromatic organic compounds(which promote the rearrangement of double bonds by a process of polymerisation).Due to the importance of graphene and the search for a non-expensive methodology to produce it,this work used CTP to synthesise GNCs using an in situ activation technique at low temperatures and evaluating the effect of the working temperature on the formation of such nanostructures.In other words,analysing the form of the particle as the temperature rises from 600 to 900℃.As result of the experimentation,powders were obtained and analysed by the techniques of X-Ray Diffraction,Raman Spectroscopy and Microscopy,employing Field Fmission Scanning Electron Microscopy by normal mode as well as by Scanning Transmission Electron Microscopy and a High-Resolution Scanning Electron Microscopy.The results show that working with temperatures between 800 and 850℃promotes the production of GNCs,considering that their size reduces as the working temperature rises.展开更多
Objective:The introduction of therapeutic antibodies(tAbs)into clinical practice has revolutionized tumor treatment strategies,but their tumor therapy efficiency is still far below expectations because of the rapid de...Objective:The introduction of therapeutic antibodies(tAbs)into clinical practice has revolutionized tumor treatment strategies,but their tumor therapy efficiency is still far below expectations because of the rapid degradation and limited tumor accumulation of tAbs.Methods:We developed a nanocapsule-based delivery system to induce the self-augmentation of the enhanced permeability and retention(EPR)effect.This system constantly penetrated across the blood-tumor barrier into the tumor while avoiding the attack of tAbs by the immune system.The biodistribution and therapeutic effect were tested with single dose administration of nanocapsule-tAbs in vivo.Results:The accumulation of Nano(cetuximab)within subcutaneous PC9 tumors was gradually enhanced over 6 days after single dose administration,which was contrary to the biodistribution of native cetuximab.Nano(cetuximab)accumulated in tumor tissues via the EPR effect and released cetuximab.The released cetuximab acted on vascular endothelial cells to destroy the blood-tumor barrier and induce self-augmentation of the EPR effect,which in turn contributed to further tumor accumulation of long-circulating Nano(cetuximab).Compared with single dose administration of native cetuximab,Nano(cetuximab)showed an effective tumor suppressive effect for 3 weeks.Conclusions:The nanocapsule-based delivery system efficiently delivered tAbs to tum or tissues and released them to boost the EPR effect,which facilitated further tumor accumulation of the tAbs.This novel self-augmentation of the EPR effect facilitated by the biological characteristics of tAbs and nanotechnology contributed to the improvement of the therapeutic effect of tAbs,and stimulated new ideas for antibody-based tumor therapy.展开更多
The controlled self-assembly of discrete metal-organic nanocapsules(MONCs),and metal-organic frameworks(MOFs)based on the MONCs are achieved.Specifically,the solvothermal reaction of nickel nitrate hexahydrate and C-m...The controlled self-assembly of discrete metal-organic nanocapsules(MONCs),and metal-organic frameworks(MOFs)based on the MONCs are achieved.Specifically,the solvothermal reaction of nickel nitrate hexahydrate and C-methylpyrogallol[4]arene in mixed DMF/MeOH solution leads to the unexpected form of discrete nickel-seamed hexameric pyrogallol[4]arene MONCs,and MONC-based three-dimensional(3D)MOF.Notably,the latter MOF is constructed from the aforementioned nickelseamed MONC building blocks and formate linkers in-situ generated from the hydrolysis of DMF solve nt.Interestingly,introducing pyridine and formic acid in the reaction conditions leads to the controlled assemblies of the discrete MONC and MONC-based 3D MOF structures.Moreover,the variabletemperature magnetic susceptibilities of both the abovementioned compounds have been investigated,indicating typical antiferromagnetic interactions between the metal centers.展开更多
To improve therapeutic effect and reduce severely side effects of carboplatin(CBP),the gas-generating nanocapsules were developed to accelerate CBP lysosome release and nucleus delivery.CBP/SB-NC was prepared by co-lo...To improve therapeutic effect and reduce severely side effects of carboplatin(CBP),the gas-generating nanocapsules were developed to accelerate CBP lysosome release and nucleus delivery.CBP/SB-NC was prepared by co-loading CBP and NaHCO 3(SB)in nanocapsules using w/o/w emulsification solvent evaporation.They exhibited vesicle-like spherical morphology,uniform particle size and negative zeta potential.Reaching the tumor site with a relatively high concentration is the first step for CBP delivery and the results showed that CBP/SB-NC could effectively increase drug accumulation at tumor site.After that,the drug delivery carriers need to be internalized into tumor cells and the in vitro cellular uptake ability results showed CBP/SB-NC could be internalized into RM-1 cells more efficient than CBP solution.After internalized by RM-1 cells,the gas-blasting release process was tested in acid environment.It was demonstrated that 5 mg/ml NaHCO 3 was optimal to achieve pH-responsive gas-blasting release.In vitro release results showed that CBP significantly rapid release in acid environment(pH 5.0)compared to neutral pH(pH 7.4)(P<0.05).Meanwhile,TEM and the change of the concentration of H+results exhibited that the explosion of CBP/SB 5-NC was more easily happened in lysosome acid environment(pH 5.0).The blasting release can accelerate CBP lysosome release to cytoplasm.Furthermore,the nucleus delivery results showed CBP/SB 5-NC can promote pH-triggered rapid nucleus delivery.And the results of Pt-DNA adduct assay showed that the binding efficiency between CBP and DNA of CBP/SB 5-NC was higher than CBP solution.At last,in vitro and in vivo anti-tumor efficacy proved that CBP/SB 5-NC could enhance anti-tumor activity for prostate cancer therapy.CBP/SB 5-NC also showed superior safety in vitro and in vivo by hemolysis assay and histopathological study.All of the results demonstrate that CBP/SB 5-NC would be an efficient gas-blasting release formulation to enhance prostate cancer treatment.展开更多
Cr(III)ehydrolyzed polyacrylamide(HPAM)gels have been extensively studied as a promising strategy controlling waste water production for mature oilfields.However,the gelation time of the current technologies is not lo...Cr(III)ehydrolyzed polyacrylamide(HPAM)gels have been extensively studied as a promising strategy controlling waste water production for mature oilfields.However,the gelation time of the current technologies is not long enough for in-depth placement.In this study,we report a novel synthesis method to obtain chromium chloride/poly(methyl methacrylate)(PMMA)nanocapsules which can significantly delay the gelation of HPAM through encapsulating the chromium chloride crosslinker.The chromium chloride-loaded nanocapsules(CreNC)are prepared via a facile inverse miniemulsion evaporation method during which the hydrophobic PMMA polymers,pre-dispersed in an organic solvent,were carefully controlled to precipitate onto stable aqueous miniemulsion droplets.The stable aqueous nanodroplets(W)containing Cr(III)are dispersed in a mixture of organic solvent(O1)with PMMA and nonsolvent medium(O2)to prepare an inverse miniemulsion.With the evaporation of the O1,PMMA forms CreNCs around the aqueous droplets.The CreNCs are readily transferred into water from the organic nonsolvent phase.The CreNCs exhibit the tunable size(358-983 nm),Cr loading(7.1%-19.1%),and Cr entrapment efficiency(11.7%-80.2%),with tunable zeta potentials in different PVA solutions.The CreNCs can delay release of Cr(III)and prolong the gelation time of HPAM up to 27 days.展开更多
Nanocapsules with triethylene glycol dimethacrylate (TEGDMA) as core material and polyurethane as wall material used for self-healing bonding resin were prepared by interfacial polycondensation in miniemulsion. The ...Nanocapsules with triethylene glycol dimethacrylate (TEGDMA) as core material and polyurethane as wall material used for self-healing bonding resin were prepared by interfacial polycondensation in miniemulsion. The influence of surfactant and costabilizer concentration on nanocapsules size and stability of nanocapsules was investigated. The size and its polydispersity of the nanocapsules were measured by light-scattering particle size analyzer. When the concentration of SDS were increased from 2.5wt% to 10wt%,the size decreases from 340.5 nm to 258.3 nm, PDI decreased from 0.210 to 0.111. As the concentration of HD increased, the size and PDI were both decreased, When reaching 10wt%,the size was 258.0 nm,PDI was 0.130. SDS and HD play important effect in synthesis of Nanocapsules containing TEGDMA.By changing the surfactant and costabilizer concentration it was possible to synthesize a wide variety of nanocapsules sizes. The performance and technical parameters of nanocapsules had been researched preliminarily, which built the solid foundation for the application to the self-repairing bonding resin.展开更多
The adsorption of hydrogen molecule on the external surface of pure 0120 nanocapsule and endohedrallyH2 @C120 complex has been examined using the density functional theory calculations. Several different bonding confi...The adsorption of hydrogen molecule on the external surface of pure 0120 nanocapsule and endohedrallyH2 @C120 complex has been examined using the density functional theory calculations. Several different bonding configu- rations are considered for the hydrogen molecule approaching the outer surface of the considered nanocages. It has been found that the adsorbed H2 molecule bound weakly to the outer surface of the pure C1~0 nanocapsules in agreement with the recent experimental and theoretical results while, it prefers to be adsorbed rather strongly on the side wall of the endohedrally /-/2@C120 complex. The adsorption of a single layer and bi-layer of two tt2 molecules on the most stable states of the considered H2@C120 complex appears to be feasible, although the molecules of the second layer are weakly bound. Furthermore, it is found that the formation of 100% coverage is favorable thermodynamically, which corresponds to about 20% by weight storage of 1-12 molecules. Thus, surprisingly, we arrive at the prediction that the C120 nanocapsules can be implemented as a novel material for energy storage.展开更多
Ag@Pt core-shell nanoparticles(Ag@Pt NPs) were prepared by a co-reduction method. Pt nanocapsules with diameters of less than 10 nm were obtained by an electrochemical method. Cyclic voltammetry(CV) scanning was u...Ag@Pt core-shell nanoparticles(Ag@Pt NPs) were prepared by a co-reduction method. Pt nanocapsules with diameters of less than 10 nm were obtained by an electrochemical method. Cyclic voltammetry(CV) scanning was used to cavitate the Ag@Pt NPs, and the morphology, structure, and cavitation conditions were studied. The results indicate that the effective cavitation conditions to obtain Pt nanoparticles from Ag@Pt NPs are a scanning voltage of 0 to 0.8 V and continuous CV scanning over 2 h. This cavitation method is also applicable for the syntheses of Ir, Ru, and Ru-Pt nanocapsules.展开更多
The five-year survival rate for pancreatic cancer is less than 5%. However, the current clinical multimodal therapy combined with first-line chemotherapy drugs only increases the patient’s median survival from 5.0 mo...The five-year survival rate for pancreatic cancer is less than 5%. However, the current clinical multimodal therapy combined with first-line chemotherapy drugs only increases the patient’s median survival from 5.0 months to 7.2 months. Consequently, a new strategy of cancer treatments is urgently needed to overcome this high-fatality disease. Through a series of biometric analyses, we found that KRAS is highly expressed in the tumor of pancreatic cancer patients, and this high expression is closely related to the poor prognosis of patients. It shows that inhibiting the expression of KRAS has great potential in gene therapy for pancreatic cancer. Given those above, we have exploited the possibility of targeted delivery of KRAS shRNA with the intelligent and bio-responsive nanomedicine to detect the special oxidative stress microenvironment of cancer cells and realize efficient cancer theranostics. Our observations demonstrate that by designing the smart self-assembled nanocapsules of melanin with fluorescent nanoclusters we can readily achieve the bio-recognition and bioimaging of cancer cells in biological solution or serum.The self-assembled nanocapsules can make a significant bio-response to the oxidative stress microenvironment of cancer cells and generate fluorescent zinc oxide Nanoclusters in situ for targeted cell bioimaging. Moreover, it can also readily facilitate cancer cell suppression through the targeted delivery of KRAS shRNA and low-temperature hyperthermia. This raises the possibility to provide a promising theranostics platform and self-assembled nanomedicine for targeted cancer diagnostics and treatments through special oxidative stress-responsive effects of cancer cells.展开更多
HIGHLIGHTS The formation of peptide nanocapsules is facilitated by a gradient interface,where the differential solvent concentration drives the peptides to preferentially localize and assemble.The peptide nanocapsules...HIGHLIGHTS The formation of peptide nanocapsules is facilitated by a gradient interface,where the differential solvent concentration drives the peptides to preferentially localize and assemble.The peptide nanocapsules,characterized by their hollow structures,demonstrated potential as carriers for targeted drug delivery.1 Introduction Peptide nanocapsules are a type of nanoscale delivery system that encapsulates active substances within a shell composed of peptides,leveraging the unique properties of peptides such as biocompatibility and biodegradability[1].Historically,the development of peptide nanocapsules was inspired primordially by the natural biological processes.展开更多
基金supported by the AMS Funding Project(No.ZZB2023C7010).
文摘Glial fibrillary acidic protein(GFAP)is one of the discriminative biomarkers for diagnosing traumatic brain injury(TBI),and accurate determination of GFAP is clinically significant.In this study,a novel fluorescence immunoassay system was designed.We encapsulated carbon dots with a high fluorescence quantum yield(QY=92.5%)inside silicon nanocapsules to serve as fluorescent markers.These markers were then integrated with the streptavidin(SA)-biotin biomagnification system and immunomagnetic separation technology for the sensitive detection of GFAP.Based on the signal cascade amplification effect of the silicon nanocapsules and SA-biotin,the fluorescence signal of the SA-biotin-modified immunofluorescence nanocapsules increased 3.6-fold compared to the carbon dot-based immunoprobe.The fluorescence immunoassay system was constructed for GFAP using SA-biotin-modified immunocapsules as the sensing probe and immunomagnetic nanoparticles as the immunorecognition probe.The fluorescence immunoassay system can specifically and ultra-sensitively quantify GFAP in blood samples,with a detection range of 10 pg/mL–10 ng/mL and detection limits of 3.2 pg/mL(serum)and 3.6 pg/mL(plasma).Moreover,the fluorescence immunoassay system exhibited prominent recoveries of 99.4%–100.4%(phosphate buffered saline),96%–102.6%(serum),and 93.2%–110.2%(plasma),with favorable specificity and excellent stabilization.The novel fluorescence immunoassay system provides a new approach to the clinical analysis of GFAP and may serve as a potential tool for screening and diagnosing TBI.
基金supported by the National Natural Science Foundation of China(Nos.21804059 and 21701059)the Natural Science Foundation of Jiangsu Province(No.BK20180974)+1 种基金the China Postdoctoral Science Foundation(No.2020M681544)the Postdoctoral Science Foundation of Jiangsu Province(No.2020Z351)。
文摘As a renovator in the field of gene editing,CRISPR-Cas9 has demonstrated immense potential for advancing next-generation gene therapy owing to its simplicity and precision.However,this potential faces significant challenges primarily stemming from the difficulty in efficiently delivering large-sized genome editing system(including Cas9 protein and sgRNA)into targeted cells and spatiotemporally controlling their activity in vitro and in vivo.Therefore,the development of CRISPR/Cas9 nanovectors that integrate high loading capacity,efficient encapsulation and spatiotemporally-controlled release is highly desirable.Herein,we have engineered a near-infrared(NIR)light-activated upconversion-DNA nanocapsule for the remote control of CRISPR-Cas9 genome editing.The light-responsive upconversion-DNA nanocapsules consist of macroporous silica(mSiO_(2))coated upconversion nanoparticles(UCNPs)and photocleavable onitrobenzyl-phosphate-modified DNA shells.The UCNPs act as a“nanotransducers”to convert NIR light(980 nm)into local ultraviolet light,thereby facilitating the cleavage of photosensitive DNA nanocapsules and enabling on-demand release of CRISPR-Cas9 encapsuled in the macroporous silica.Furthermore,by formulating a sgRNA targeted to a tumor gene(polo-like kinase-1,PLK-1),the CRISPR-Cas9 loaded UCNPDNA nanocapsules(crUCNP-DNA nanocapsules)have effectively suppressed the proliferation of tumor cells through NIR light-activated gene editing both in vitro and in vivo.Overall,this UCNP-DNA nanocapsule holds tremendous potential for CRISPR-Cas9 delivery and remote-controlled gene editing in deep tissues,as well as the treatment of diverse diseases.
基金Supported by Program for the National Natural Science Foundation of China (Nos. 51577021 and U1704253)the Fundamental Research Funds for the Central Universities (DUT17GF107)
文摘Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate single-domain size which gives rise to natural resonance in 2–18 GHz.The addition of MnO2 confines degree of graphitization catalyzed by iron and contributes to the formation of amorphous carbon.The heterogeneous materials composed of crystalline–amorphous structures disperse evenly and its density is significantly reduced on account of porous properties.Meanwhile,adjustable dielectric loss is achieved by interrupting Fe core aggregation and stacking graphene conductive network.The dielectric loss synergistically with magnetic loss endows the FMCA enhanced absorption.The optimal reflection loss(RL)is up to−45 dB,and the effective bandwidth(RL<−10 dB)is 5.0 GHz with 2.0 mm thickness.The proposed confinement strategy not only lays the foundation for designing high-performance microwave absorber,but also offers a general duty synthesis method for heterogeneous crystalline–amorphous composites with tunable composition in other fields.
基金supported by the National Natural Science Foundation of China under Grant No. 50831006the National Major Fundamental Research Program(Grant No. 2010CB934603) of China, Ministry of Science and Technology China
文摘The structure, magnetic and microwave-absorption properties of graphite-coated (Fe, Ni) alloy nanocapsules, synthesized by the arc-discharge method, have been studied. High-resolution transmission electron microscopy shows that the nanocapsules have a core/shell structure with (Fe, Ni) alloy as the core and graphite as the shell. All (Fe, Ni) alloy nanocapsules/paraffin composites show good microwave-absorption properties. The optimal reflection loss (RL) was found for (Fe70Ni30)/C nanocapsules/paraffin composites, being -47.84 dB at 14.6 GHz for an absorber thickness of 1.99 mm, while the RL values exceeding -10 dB were found in the 12.4– 17.4 GHz range, which almost covers the Ku band (12.4–18 GHz). For (Fe70Ni30)/C nanocapsules/paraffin composites, RL values can exceed -10 dB in the 11.4–18 GHz range with an absorber thickness of 1.91 mm, which cover the whole Ku band.
基金the financial supports from the National Natural Science Foundation of China(Grant Nos.51872005,U1508201,52072002)。
文摘Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hindered by sluggish kinetics and large volume expansion. Herein, N/S co-doped carbon nanocapsule (NSCN) is constructed for superior K+ storage. The NSCN possesses 3D nanocapsule framework with abundant meso/macropores, which guarantees structural robustness and accelerates ions/electrons transportation. The high-level N/S co-doping in carbon matrix not only generates ample defects and active sites for K+ adsorption, but also expands interlayer distance for facile K+ intercalation/deintercalation. As a result, the NSCN electrode delivers a high reversible capacity (408 mAh g^(−1) at 0.05 A g^(−1)), outstanding rate capability (149 mAh g^(−1) at 5 A g^(−1)) and favorable cycle stability (150m Ah g^(−1) at 2 A g^(−1) after 2000 cycles). Ex situ TEM, Raman and XPS measurements demonstrate the excellent stability and reversibility of NSCN electrode during potassiation/depotassiation process. This work provides inspiration for the optimization of energy storage materials by structure and doping engineering.
基金HBW acknowledges the funding support from“Hundred Talents Program”of Zhejiang University and International Joint Laboratory of Chinese Education Ministry on Resource Chemistry at Shanghai Normal University.
文摘A robust solid-electrolyte interphase(SEI)enabled by electrolyte additive is a promising approach to stabilize Li anode and improve Li cycling efficiency.However,the self-sacrificial nature of SEI forming additives limits their capability to stabilize Li anode for long-term cycling.Herein,we demonstrate nanocapsules made from metal–organic frameworks for sustained release of LiNO3 as surface passivation additive in commercial carbonate-based electrolyte.The nanocapsules can offer over 10 times more LiNO3 than the solubility of LiNO3.Continuous supply of LiNO3 by nanocapsules forms a nitride-rich SEI layer on Li anode and persistently remedies SEI during prolonged cycling.As a result,lifespan of thin Li anode in 50μm,which experiences drastic volume change and repeated SEI formation during cycling,has been notably improved.By pairing with an industry-level thick LiCoO2 cathode,practical Li-metal full cell demonstrates a remarkable capacity retention of 90%after 240 cycles,in contrast to fast capacity drop after 60 cycles in LiNO3 saturated electrolyte.
基金Supported by the State Key Development Program for Basic Research of China(2009CB226104)the National Natural ScienceFoundation of China(20876097,21076125)+1 种基金Shanghai Chenguang Foundation(10CG60)Shanghai Excellent Talents(yyy10071)
文摘The aroma sustained-release cotton fabric was prepared by finishing rose fragrance nanocapsules directly on cotton.The structure and properties of nanocapsules were demonstrated by transmission electron microscope(TEM),dynamic light scattering(DLS),fourier transform infrared spectrometer(FTIR),X-ray diffraction (XRD),gas chromatography-mass spectrometry(GC-MS)and electronic nose.The results showed that the spherical nanocapsule dispersed evenly and the average diameter kept 51.4 nm.The existence of COO peak(1741 cm? 1)in the FTIR curve of the finished cotton fabric and the decrease of crystallinity demonstrated that rose fragrance nanocapsules have been incorporated into the cotton fabrics.The washing resistance of the cotton fabrics finished by 51.4 nm nanocapsules was much better than that by rose fragrance alone.Besides,the loss of fragrance from the cotton fabrics finished by 51.4 nm nanocapsules was obviously lower than that by 532 nm nanocapsules and rose fragrance.The smaller the nanocapsule size,the better the sustained release property.Electronic nose analysis also displayed that the aroma released from the cotton fabrics finished by nanocapsules after washing has no obvious variety in contrast to that without washing.The cotton fabrics finished by nanocapsules has the excellent sustained release property.
基金financially supported by the National High Technology Research and Development Program (No. 2016YFA0200303)the Beijing Natural Science Foundation(No. 2164071)+1 种基金the National Natural Science Foundation of China (Nos. 31522023,31771095, and 51573188)the Beijing Municipal Science & Technology Commission(No. 2161100002616015)
文摘Fragranced products are wildly used in our daily life. However, their storage, application and quality are severely influenced by their strong volatility. In order to overcome these natural defects of fragrances,fragrance encapsulation approaches have been developed recently. In this study, a mild, simple and lowcost method of fragrance encapsulation was invented. Liposomes composed of soya lecithin/DSPEPEG2000/PLGA were prepared to encapsulate lily fragrance(LF). And these nanosized fragrance products was named LF-NPs. The hydrodynamic diameters of LF-NPs were approximately 100 nm and their encapsulation efficiency was up to 21.9%. Besides, LF-NPs could also prolong the release time of lily fragrance. Finally, the cytotoxicity tests indicated that LF-NPs offered biocompatibility. Therefore, LF-NPs were expected to have application prospects.
基金financially supported by the National Natural Science Foundation of China (No. 21522501)Hunan Provincial Natural Science Foundation of China (No. 2018JJ1007)Science and Technology Development Fund, Macao (No. 196/2017/A3)
文摘The novel graphitic nanomaterial of metal graphitic nanocapsules(MGNs) with superior stability, unique optical properties and biocompatibility possess great potential in biomedical and bioanalytical applications. The graphitic shell can quench the background fluorescence interference from external environments via a fluorescence resonance energy transfer(FRET) process and even avoid unnecessary reactions catalyzed by inner metal core. The graphitic shell with several characteristic Raman bands itself can act as Raman signal probe or internal standard(IS), especially the 2D-band within the cellular Raman-silent region helps to reduce the interference signals from external conditions. The present context attempts to give a comprehensive overview about the preparation and unique properties of MGNs as well as their applications in SERS biodetection and bioimaging.
文摘Structure and magnetic properties of Ni nanoparticles and Ni(C) nanocapsules were studied. The carbon atoms hardly affect the lattice of Ni to form Ni-C solid solution or nickel carbides. The large thermal irreversibility in zero-field-cooled and zero-field magnetization curves indicates magnetic blocking with a wide energy barrier. Saturation magnetization, remanent magnetization and coercivity of Ni(C) nanocapsules decrease with increasing temperature.
基金Altos Homos de Mexico,S.A.B.de C.V.:Funding for tests and analysis of synthesised materials.Consejo Nacional de Cienciay Tecnologia(CONACyT):Funding under“Proyecto FORDECYT273496”.
文摘It has recently been reported that coal tar pitch(CTP)can be utilised as raw material for the production of graphene nanocapsules(GNCs)because it is formed by a great quantity of aromatic organic compounds(which promote the rearrangement of double bonds by a process of polymerisation).Due to the importance of graphene and the search for a non-expensive methodology to produce it,this work used CTP to synthesise GNCs using an in situ activation technique at low temperatures and evaluating the effect of the working temperature on the formation of such nanostructures.In other words,analysing the form of the particle as the temperature rises from 600 to 900℃.As result of the experimentation,powders were obtained and analysed by the techniques of X-Ray Diffraction,Raman Spectroscopy and Microscopy,employing Field Fmission Scanning Electron Microscopy by normal mode as well as by Scanning Transmission Electron Microscopy and a High-Resolution Scanning Electron Microscopy.The results show that working with temperatures between 800 and 850℃promotes the production of GNCs,considering that their size reduces as the working temperature rises.
基金the National Key Research and Development Program(Grant Nos.2016YFC0902502 and 2018YFA0209700)the National Natural Science Foundation of China(Grant Nos.81772667 and 51773151)the Special Construction Innovation Funded Project for Community in Beijing,Tianjin and Hebei of China(Grant No.18247792D).
文摘Objective:The introduction of therapeutic antibodies(tAbs)into clinical practice has revolutionized tumor treatment strategies,but their tumor therapy efficiency is still far below expectations because of the rapid degradation and limited tumor accumulation of tAbs.Methods:We developed a nanocapsule-based delivery system to induce the self-augmentation of the enhanced permeability and retention(EPR)effect.This system constantly penetrated across the blood-tumor barrier into the tumor while avoiding the attack of tAbs by the immune system.The biodistribution and therapeutic effect were tested with single dose administration of nanocapsule-tAbs in vivo.Results:The accumulation of Nano(cetuximab)within subcutaneous PC9 tumors was gradually enhanced over 6 days after single dose administration,which was contrary to the biodistribution of native cetuximab.Nano(cetuximab)accumulated in tumor tissues via the EPR effect and released cetuximab.The released cetuximab acted on vascular endothelial cells to destroy the blood-tumor barrier and induce self-augmentation of the EPR effect,which in turn contributed to further tumor accumulation of long-circulating Nano(cetuximab).Compared with single dose administration of native cetuximab,Nano(cetuximab)showed an effective tumor suppressive effect for 3 weeks.Conclusions:The nanocapsule-based delivery system efficiently delivered tAbs to tum or tissues and released them to boost the EPR effect,which facilitated further tumor accumulation of the tAbs.This novel self-augmentation of the EPR effect facilitated by the biological characteristics of tAbs and nanotechnology contributed to the improvement of the therapeutic effect of tAbs,and stimulated new ideas for antibody-based tumor therapy.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB20000000)the National Nature Science Foundation of China(No.51603206)the Nature Science Foundation of Fujian Province(No.2016J05056)。
文摘The controlled self-assembly of discrete metal-organic nanocapsules(MONCs),and metal-organic frameworks(MOFs)based on the MONCs are achieved.Specifically,the solvothermal reaction of nickel nitrate hexahydrate and C-methylpyrogallol[4]arene in mixed DMF/MeOH solution leads to the unexpected form of discrete nickel-seamed hexameric pyrogallol[4]arene MONCs,and MONC-based three-dimensional(3D)MOF.Notably,the latter MOF is constructed from the aforementioned nickelseamed MONC building blocks and formate linkers in-situ generated from the hydrolysis of DMF solve nt.Interestingly,introducing pyridine and formic acid in the reaction conditions leads to the controlled assemblies of the discrete MONC and MONC-based 3D MOF structures.Moreover,the variabletemperature magnetic susceptibilities of both the abovementioned compounds have been investigated,indicating typical antiferromagnetic interactions between the metal centers.
基金This work was supported by a grant from the National Natural Science Foundation of China(Nos.81773652 and 81974498)the Young Scholar Program of Shandong University(2017WLJH40).
文摘To improve therapeutic effect and reduce severely side effects of carboplatin(CBP),the gas-generating nanocapsules were developed to accelerate CBP lysosome release and nucleus delivery.CBP/SB-NC was prepared by co-loading CBP and NaHCO 3(SB)in nanocapsules using w/o/w emulsification solvent evaporation.They exhibited vesicle-like spherical morphology,uniform particle size and negative zeta potential.Reaching the tumor site with a relatively high concentration is the first step for CBP delivery and the results showed that CBP/SB-NC could effectively increase drug accumulation at tumor site.After that,the drug delivery carriers need to be internalized into tumor cells and the in vitro cellular uptake ability results showed CBP/SB-NC could be internalized into RM-1 cells more efficient than CBP solution.After internalized by RM-1 cells,the gas-blasting release process was tested in acid environment.It was demonstrated that 5 mg/ml NaHCO 3 was optimal to achieve pH-responsive gas-blasting release.In vitro release results showed that CBP significantly rapid release in acid environment(pH 5.0)compared to neutral pH(pH 7.4)(P<0.05).Meanwhile,TEM and the change of the concentration of H+results exhibited that the explosion of CBP/SB 5-NC was more easily happened in lysosome acid environment(pH 5.0).The blasting release can accelerate CBP lysosome release to cytoplasm.Furthermore,the nucleus delivery results showed CBP/SB 5-NC can promote pH-triggered rapid nucleus delivery.And the results of Pt-DNA adduct assay showed that the binding efficiency between CBP and DNA of CBP/SB 5-NC was higher than CBP solution.At last,in vitro and in vivo anti-tumor efficacy proved that CBP/SB 5-NC could enhance anti-tumor activity for prostate cancer therapy.CBP/SB 5-NC also showed superior safety in vitro and in vivo by hemolysis assay and histopathological study.All of the results demonstrate that CBP/SB 5-NC would be an efficient gas-blasting release formulation to enhance prostate cancer treatment.
基金The authors were also supported by the National Natural Science Foundation of China(grant number 52104057 and 52204041)Natural Science Foundation of Shandong Province(grant number ZR2021QE106)China Postdoctoral Science Foundation(grant number 2021M693506)during the writing of this paper at China University of Petroleum(East China).
文摘Cr(III)ehydrolyzed polyacrylamide(HPAM)gels have been extensively studied as a promising strategy controlling waste water production for mature oilfields.However,the gelation time of the current technologies is not long enough for in-depth placement.In this study,we report a novel synthesis method to obtain chromium chloride/poly(methyl methacrylate)(PMMA)nanocapsules which can significantly delay the gelation of HPAM through encapsulating the chromium chloride crosslinker.The chromium chloride-loaded nanocapsules(CreNC)are prepared via a facile inverse miniemulsion evaporation method during which the hydrophobic PMMA polymers,pre-dispersed in an organic solvent,were carefully controlled to precipitate onto stable aqueous miniemulsion droplets.The stable aqueous nanodroplets(W)containing Cr(III)are dispersed in a mixture of organic solvent(O1)with PMMA and nonsolvent medium(O2)to prepare an inverse miniemulsion.With the evaporation of the O1,PMMA forms CreNCs around the aqueous droplets.The CreNCs are readily transferred into water from the organic nonsolvent phase.The CreNCs exhibit the tunable size(358-983 nm),Cr loading(7.1%-19.1%),and Cr entrapment efficiency(11.7%-80.2%),with tunable zeta potentials in different PVA solutions.The CreNCs can delay release of Cr(III)and prolong the gelation time of HPAM up to 27 days.
基金Funded by the National Natural Science Foundation of China (No.30672346)
文摘Nanocapsules with triethylene glycol dimethacrylate (TEGDMA) as core material and polyurethane as wall material used for self-healing bonding resin were prepared by interfacial polycondensation in miniemulsion. The influence of surfactant and costabilizer concentration on nanocapsules size and stability of nanocapsules was investigated. The size and its polydispersity of the nanocapsules were measured by light-scattering particle size analyzer. When the concentration of SDS were increased from 2.5wt% to 10wt%,the size decreases from 340.5 nm to 258.3 nm, PDI decreased from 0.210 to 0.111. As the concentration of HD increased, the size and PDI were both decreased, When reaching 10wt%,the size was 258.0 nm,PDI was 0.130. SDS and HD play important effect in synthesis of Nanocapsules containing TEGDMA.By changing the surfactant and costabilizer concentration it was possible to synthesize a wide variety of nanocapsules sizes. The performance and technical parameters of nanocapsules had been researched preliminarily, which built the solid foundation for the application to the self-repairing bonding resin.
文摘The adsorption of hydrogen molecule on the external surface of pure 0120 nanocapsule and endohedrallyH2 @C120 complex has been examined using the density functional theory calculations. Several different bonding configu- rations are considered for the hydrogen molecule approaching the outer surface of the considered nanocages. It has been found that the adsorbed H2 molecule bound weakly to the outer surface of the pure C1~0 nanocapsules in agreement with the recent experimental and theoretical results while, it prefers to be adsorbed rather strongly on the side wall of the endohedrally /-/2@C120 complex. The adsorption of a single layer and bi-layer of two tt2 molecules on the most stable states of the considered H2@C120 complex appears to be feasible, although the molecules of the second layer are weakly bound. Furthermore, it is found that the formation of 100% coverage is favorable thermodynamically, which corresponds to about 20% by weight storage of 1-12 molecules. Thus, surprisingly, we arrive at the prediction that the C120 nanocapsules can be implemented as a novel material for energy storage.
基金The financial support by the National Basic Research and Development program of China(Grant No.2014GB120000)
文摘Ag@Pt core-shell nanoparticles(Ag@Pt NPs) were prepared by a co-reduction method. Pt nanocapsules with diameters of less than 10 nm were obtained by an electrochemical method. Cyclic voltammetry(CV) scanning was used to cavitate the Ag@Pt NPs, and the morphology, structure, and cavitation conditions were studied. The results indicate that the effective cavitation conditions to obtain Pt nanoparticles from Ag@Pt NPs are a scanning voltage of 0 to 0.8 V and continuous CV scanning over 2 h. This cavitation method is also applicable for the syntheses of Ir, Ru, and Ru-Pt nanocapsules.
基金supported by the National Natural Science Foundation of China (Nos. 82061148012, 82027806, 91753106)the National Key Research and Development Program of China (No. 2017YFA0205300)+1 种基金the Primary Research & Development Plan of Jiangsu Province (No. BE2019716)the program of China Scholarships Council (No. 202006090323)。
文摘The five-year survival rate for pancreatic cancer is less than 5%. However, the current clinical multimodal therapy combined with first-line chemotherapy drugs only increases the patient’s median survival from 5.0 months to 7.2 months. Consequently, a new strategy of cancer treatments is urgently needed to overcome this high-fatality disease. Through a series of biometric analyses, we found that KRAS is highly expressed in the tumor of pancreatic cancer patients, and this high expression is closely related to the poor prognosis of patients. It shows that inhibiting the expression of KRAS has great potential in gene therapy for pancreatic cancer. Given those above, we have exploited the possibility of targeted delivery of KRAS shRNA with the intelligent and bio-responsive nanomedicine to detect the special oxidative stress microenvironment of cancer cells and realize efficient cancer theranostics. Our observations demonstrate that by designing the smart self-assembled nanocapsules of melanin with fluorescent nanoclusters we can readily achieve the bio-recognition and bioimaging of cancer cells in biological solution or serum.The self-assembled nanocapsules can make a significant bio-response to the oxidative stress microenvironment of cancer cells and generate fluorescent zinc oxide Nanoclusters in situ for targeted cell bioimaging. Moreover, it can also readily facilitate cancer cell suppression through the targeted delivery of KRAS shRNA and low-temperature hyperthermia. This raises the possibility to provide a promising theranostics platform and self-assembled nanomedicine for targeted cancer diagnostics and treatments through special oxidative stress-responsive effects of cancer cells.
文摘HIGHLIGHTS The formation of peptide nanocapsules is facilitated by a gradient interface,where the differential solvent concentration drives the peptides to preferentially localize and assemble.The peptide nanocapsules,characterized by their hollow structures,demonstrated potential as carriers for targeted drug delivery.1 Introduction Peptide nanocapsules are a type of nanoscale delivery system that encapsulates active substances within a shell composed of peptides,leveraging the unique properties of peptides such as biocompatibility and biodegradability[1].Historically,the development of peptide nanocapsules was inspired primordially by the natural biological processes.