期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism 被引量:2
1
作者 Xiaotao Jin Yanlan Wang +2 位作者 Yingping Huang Di Huang Xiang Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第10期375-378,共4页
Sodium percarbonate(Na_(2)CO_(3)·1.5H_(2)O_(2),SPC)has been extensively employed as a solid substitute of H_(2)O_(2)for Fenton process in water treatment,because of its high stability during the production,transp... Sodium percarbonate(Na_(2)CO_(3)·1.5H_(2)O_(2),SPC)has been extensively employed as a solid substitute of H_(2)O_(2)for Fenton process in water treatment,because of its high stability during the production,transport,storage and usage.In addition,SPC can be applied in a wider range of work pH,it is also applied as a buffer in Fenton reaction for preventing a drop in pH.Herein,we have synthesized basic copper molybdate(BCM)nanoblocks with the molecular formula of Cu_(3)(MoO_(4))_(2)(OH)_(2)as an efficient and heterogeneous catalyst for antibiotics degradation via percarbonate activation.First,fully physical characterizations confirmed BCM nanocomposite exhibited a structure of nanoblocks.We also found that BCM/SPC system could work in a much wider pH range,compared with H_(2)O_(2).Then,BCM/SPC system presented a good anti-interference ability for natural organic matter in OTC degradation.EPR results and Quenching tests confirmed that the co-presence of·CO_(3)-,·O_(2)-,1O_(2)and·OH in BCM/SPC system. 展开更多
关键词 Sodium percarbonate Fenton process Water treatment Copper molybdate nanoblocks
原文传递
Preparation of nitrogen-doped carbon nanoblocks with high electrocatalytic activity for oxygen reduction reaction in alkaline solution 被引量:2
2
作者 张亭亭 何传生 +1 位作者 黎琳波 林雨青 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1275-1282,共8页
The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and... The oxygen reduction reaction (ORR) is traditionally performed using noble‐metals catalysts, e.g. Pt. However, these metal‐based catalysts have the drawbacks of high costs, low selectivity, poor stabili‐ties, and detrimental environmental effects. Here, we describe metal‐free nitrogen‐doped carbon nanoblocks (NCNBs) with high nitrogen contents (4.11%), which have good electrocatalytic proper‐ties for ORRs. This material was fabricated using a scalable, one‐step process involving the pyrolysis of tris(hydroxymethyl)aminomethane (Tris) at 800℃. Rotating ring disk electrode measurements show that the NCNBs give a high electrocatalytic performance and have good stability in ORRs. The onset potential of the catalyst for the ORR is-0.05 V (vs Ag/AgCl), the ORR reduction peak potential is-0.20 V (vs Ag/AgCl), and the electron transfer number is 3.4. The NCNBs showed pronounced electrocatalytic activity, improved long‐term stability, and better tolerance of the methanol crosso‐ver effect compared with a commercial 20 wt%Pt/C catalyst. The composition and structure of, and nitrogen species in, the NCNBs were investigated using Fourier‐transform infrared spectroscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction. The pyroly‐sis of Tris at high temperature increases the number of active nitrogen sites, especially pyridinic nitrogen, which creates a net positive charge on adjacent carbon atoms, and the high positive charge promotes oxygen adsorption and reduction. The results show that NCNBs prepared by pyrolysis of Tris as nitrogen and carbon sources are a promising ORR catalyst for fuel cells. 展开更多
关键词 Nitrogen-doped carbon nanoblock Trihydroxymethyl aminomethane ELECTROCATALYST Oxygen reduction reaction NANOCATALYST
在线阅读 下载PDF
Near Infrared Fluorescence Enhancement by Local Surface Plasmon Resonance from Arrayed Gold Nanoblocks
3
作者 Fuyuki Ito Ryuichi Ohta +3 位作者 Yukie Yokota Kosei Ueno Hiroaki Misawa Toshihiko Nagamura 《Optics and Photonics Journal》 2013年第1期27-31,共5页
The near infrared (NIR) fluorescence enhancement by local surface plasmon resonanoce from arrayed gold (Au) nanoblocks was investigated by NIR fluorescent dyes, IR780, immobilized in hydrophobic DNA thin film on glass... The near infrared (NIR) fluorescence enhancement by local surface plasmon resonanoce from arrayed gold (Au) nanoblocks was investigated by NIR fluorescent dyes, IR780, immobilized in hydrophobic DNA thin film on glass substrates, to clarify the gap mode effect on the fluorescence enhancement. In the substrate with Dimer type Au nanoblock arrangement, average total fluorescence intensity was larger by 10.0, 2.4, and 12.4 times for non-polarized, P- and S- polarization as compared with that on a glass substrate alone, respectively. These findings suggested that enhancement of excitation light intensity at nanogap in the Dimer type Au nanoblock arrangement affected the fluorescence intensity. Average total fluorescence intensity, on the other hand, was smaller by 0.63 times as compared with that on a glass substrate alone in the checkerboard type Au array. It is suggested that the fluorescence quenching was caused by the energy transfer from the excited state of IR780 to Au nanoblocks or by the increased deactivation of excited dye molecules induced by resonance with Au nanoblocks at the checkerboard arrangement. We have firstly achieved the NIR fluorescence enhancement by LSPR due to the gap mode. 展开更多
关键词 Gap Mode of GOLD Nanoblock Array FLUORESCENCE Enhancement NEAR-INFRARED FLUORESCENCE DYE LOCAL Surface PLASMON
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部