SnO 2 powder was prepared by chemical precipitation method. Effects of starting materials concentration, pH value of final system and treating temperature on the particle size were investigated by means of X-ray diffr...SnO 2 powder was prepared by chemical precipitation method. Effects of starting materials concentration, pH value of final system and treating temperature on the particle size were investigated by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The parameters of chemical precipitation were optimized. It is concluded that the concentration of starting material and pH value of final system has little effect on the SnO 2 particle size, but heat treatment do greatly affect the particle size. If the treating temperature is lower than 500 ℃, the particle size has a good stability; otherwise, the particle size remarkably increases with increasing temperature. The dispersing agents have various influences on SnO 2 powder as the polarity of dispersing agents changed.展开更多
Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. S...Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. SnO2-NS possesses a mesoporous structure and has a higher surface area, larger pore volume, and more active species than SnO2-NP, and shows improved activity. In contrast, although SnO2-NR+NP has only a slightly higher surface area and pore volume, and slightly more active surface oxygen species than SnO2-NP, it has more exposed active (110) facets, which is the reason for its improved oxidation activity. Water vapor has only a reversible and weak influence on SnO2-NS, therefore it is a potential catalyst for emission control processes.展开更多
In this paper,MCM-41 was synthesized by a soft template technique and MCM-41 supported CuO-CeO2 nano-sized catalysts with different Cu/Ce molar ratios were prepared by a deposition-precipitation method.N2 adsorption,H...In this paper,MCM-41 was synthesized by a soft template technique and MCM-41 supported CuO-CeO2 nano-sized catalysts with different Cu/Ce molar ratios were prepared by a deposition-precipitation method.N2 adsorption,HRTEM-EDS,H2-TPR,XPS characterization,as well as catalytic activity and durability tests for the catalytic combustion of chlorobenzene(CB)were conducted to explore the relationship between the structure and catalytic performance of the catalysts.It is revealed that cuCe(6:1)/MCM-41 has the highest activity and can completely catalyze the degradation of CB at 260℃.The reasons for the high activity of the catalysts are as follows:MCM-41,a type of mesoporous material which has large pore size and large specific surface area,is suitable as a catalyst carrier.The average diameter of nano-sized CuO and CeO2 particles is about 3-5 nm and adding CeO2 improves the dispersion of active component CuO,which are highly and evenly dispersed on the surface of MCM-41.Characterization results also explain why MCM-41 supported CuO-CeO2 with appropriate proportion can highly enhance the catalytic activity.The reason is that CeO2 acting as an oxygen-rich material can improve the mobility of oxygen species through continuous redox between Ce4^+and Ce3^+,and improve the catalytic performance of CuO for CB combustion.Besides,CuCe(6:1)/MCM-41 also displays good durability for CB combustion,both in the humid condition and in the presence of benzene,making it a promising catalytic material for the elimination of chlorinated VOCs.展开更多
The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composit...The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging.展开更多
Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g...Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .展开更多
Nanosized 1 at% Sm^(3+)doped Y_(2)O_(3)powders were prepared by an ultrasound assisted sol-gel method.Y_(2)O_(3):Sm^(3+)powders crystallize in Y_(2)O_(3)pure cubic phase and XRD analysis shows that the as-used agitati...Nanosized 1 at% Sm^(3+)doped Y_(2)O_(3)powders were prepared by an ultrasound assisted sol-gel method.Y_(2)O_(3):Sm^(3+)powders crystallize in Y_(2)O_(3)pure cubic phase and XRD analysis shows that the as-used agitation protocol affects strongly the crystallite’s shape and mean size.The recorded emission spectra under λ_(em)=600 nm exhibit two absorption bands;the first one is assigned to O^(2-)→Sm^(3+)charge transfer state(CTS) with a maximum absorption at 223 nm,and the second is due to intraconfigurational transition 4f^(5)-4f^(5) of Sm^(3+) with a maximum absorption at 407 nm.The 223 and 407 nm transitions are attributed to characteristics intra-configurational transitions of Sm^(3+).All emission spectra are dominated by reddish/orange luminescence located at 606 nm and assigned to ^(4)G_(5/2)→^(6)H_(7/2) transition.It is found that the photoluminescence intensity of samples obtained under excitation at 407 nm is 60 times smaller than that obtained under 223 nm excitation.Decay time measurements of the ^(4)G_(5/2)→^(6)H_(7/2) luminescence transition indicate that decay time of nano-sized powder is significantly shorter than bulk material one.展开更多
The material considered in this study, SnO2 (110), has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small mo-lecules. In the following calculatio...The material considered in this study, SnO2 (110), has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small mo-lecules. In the following calculations crystal line SnO2 nano-crystal have been considered. The grains lattice, which has the rutile structure of the bulk material, includes oxygen vacancies and depositing a gaseous molecule, either ethanol, above an atom on the grain surface, generates the adsorbed system. The conduc-tance has a functional relationship with the structure and the distance molecule of the na-no- crystal and its dependence on these quanti-ties parallels the one of the binding energy. The calculations have quantum mechanical detail and are based on a semi-empirical (MNDO me-thod), which is applied to the evaluation of both the electronic structure and of the conductance. We study the structural, total energy, thermo-dynamic and conductive properties of absorp-tion C2H5OH on nano-crystal, which convert to acetaldehyde and acetone.展开更多
以 Sn Cl4· Ti( OBu) 4、氨水、乙醇为原料 ,采用活性层包覆法 ,制备出 Ti O2 / Sn O2 复合光催化剂 ,并用IR、XRD、TEM和 BET等手段对样品进行了表征 .研究其对有机磷农药敌敌畏的光催化降解效果 ,与单一半导体催化剂 Sn O2 、Ti ...以 Sn Cl4· Ti( OBu) 4、氨水、乙醇为原料 ,采用活性层包覆法 ,制备出 Ti O2 / Sn O2 复合光催化剂 ,并用IR、XRD、TEM和 BET等手段对样品进行了表征 .研究其对有机磷农药敌敌畏的光催化降解效果 ,与单一半导体催化剂 Sn O2 、Ti O2 做了简单对比 .结果表明 :所制 Ti O2 / Sn O2 样品为包覆型结构 ,由锐钛矿型 Ti O2 金红石型 Sn O2 组成 ,与 Sn O2 及 Ti O2 晶体粉末相比所制 Ti O2 / Sn O2 包覆粒子光催化活性得到明显提高 .展开更多
文摘SnO 2 powder was prepared by chemical precipitation method. Effects of starting materials concentration, pH value of final system and treating temperature on the particle size were investigated by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The parameters of chemical precipitation were optimized. It is concluded that the concentration of starting material and pH value of final system has little effect on the SnO 2 particle size, but heat treatment do greatly affect the particle size. If the treating temperature is lower than 500 ℃, the particle size has a good stability; otherwise, the particle size remarkably increases with increasing temperature. The dispersing agents have various influences on SnO 2 powder as the polarity of dispersing agents changed.
基金supported by the National Natural Science Foundation of China (21263015)the Education Department of Jiangxi Province (KJLD14005)the Natural Science Foundation of Jiangxi Province(20151BBE50006,20122BAB203009)~~
文摘Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. SnO2-NS possesses a mesoporous structure and has a higher surface area, larger pore volume, and more active species than SnO2-NP, and shows improved activity. In contrast, although SnO2-NR+NP has only a slightly higher surface area and pore volume, and slightly more active surface oxygen species than SnO2-NP, it has more exposed active (110) facets, which is the reason for its improved oxidation activity. Water vapor has only a reversible and weak influence on SnO2-NS, therefore it is a potential catalyst for emission control processes.
基金Project supported by the National Natural Science Foundation of China(21577094)Zhejiang Public Welfare Technology Research Project(LGG19B070003)the Foundation of Science and Technology of Shaoxing City(2018C10019)。
文摘In this paper,MCM-41 was synthesized by a soft template technique and MCM-41 supported CuO-CeO2 nano-sized catalysts with different Cu/Ce molar ratios were prepared by a deposition-precipitation method.N2 adsorption,HRTEM-EDS,H2-TPR,XPS characterization,as well as catalytic activity and durability tests for the catalytic combustion of chlorobenzene(CB)were conducted to explore the relationship between the structure and catalytic performance of the catalysts.It is revealed that cuCe(6:1)/MCM-41 has the highest activity and can completely catalyze the degradation of CB at 260℃.The reasons for the high activity of the catalysts are as follows:MCM-41,a type of mesoporous material which has large pore size and large specific surface area,is suitable as a catalyst carrier.The average diameter of nano-sized CuO and CeO2 particles is about 3-5 nm and adding CeO2 improves the dispersion of active component CuO,which are highly and evenly dispersed on the surface of MCM-41.Characterization results also explain why MCM-41 supported CuO-CeO2 with appropriate proportion can highly enhance the catalytic activity.The reason is that CeO2 acting as an oxygen-rich material can improve the mobility of oxygen species through continuous redox between Ce4^+and Ce3^+,and improve the catalytic performance of CuO for CB combustion.Besides,CuCe(6:1)/MCM-41 also displays good durability for CB combustion,both in the humid condition and in the presence of benzene,making it a promising catalytic material for the elimination of chlorinated VOCs.
文摘The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging.
基金Funded by the National Science Foundation of China ( No.50375037)
文摘Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .
基金supported by Nuclear Research Center of Algiers(CRNA),Department of Laser,Luminescence Laboratory。
文摘Nanosized 1 at% Sm^(3+)doped Y_(2)O_(3)powders were prepared by an ultrasound assisted sol-gel method.Y_(2)O_(3):Sm^(3+)powders crystallize in Y_(2)O_(3)pure cubic phase and XRD analysis shows that the as-used agitation protocol affects strongly the crystallite’s shape and mean size.The recorded emission spectra under λ_(em)=600 nm exhibit two absorption bands;the first one is assigned to O^(2-)→Sm^(3+)charge transfer state(CTS) with a maximum absorption at 223 nm,and the second is due to intraconfigurational transition 4f^(5)-4f^(5) of Sm^(3+) with a maximum absorption at 407 nm.The 223 and 407 nm transitions are attributed to characteristics intra-configurational transitions of Sm^(3+).All emission spectra are dominated by reddish/orange luminescence located at 606 nm and assigned to ^(4)G_(5/2)→^(6)H_(7/2) transition.It is found that the photoluminescence intensity of samples obtained under excitation at 407 nm is 60 times smaller than that obtained under 223 nm excitation.Decay time measurements of the ^(4)G_(5/2)→^(6)H_(7/2) luminescence transition indicate that decay time of nano-sized powder is significantly shorter than bulk material one.
文摘The material considered in this study, SnO2 (110), has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small mo-lecules. In the following calculations crystal line SnO2 nano-crystal have been considered. The grains lattice, which has the rutile structure of the bulk material, includes oxygen vacancies and depositing a gaseous molecule, either ethanol, above an atom on the grain surface, generates the adsorbed system. The conduc-tance has a functional relationship with the structure and the distance molecule of the na-no- crystal and its dependence on these quanti-ties parallels the one of the binding energy. The calculations have quantum mechanical detail and are based on a semi-empirical (MNDO me-thod), which is applied to the evaluation of both the electronic structure and of the conductance. We study the structural, total energy, thermo-dynamic and conductive properties of absorp-tion C2H5OH on nano-crystal, which convert to acetaldehyde and acetone.
文摘以 Sn Cl4· Ti( OBu) 4、氨水、乙醇为原料 ,采用活性层包覆法 ,制备出 Ti O2 / Sn O2 复合光催化剂 ,并用IR、XRD、TEM和 BET等手段对样品进行了表征 .研究其对有机磷农药敌敌畏的光催化降解效果 ,与单一半导体催化剂 Sn O2 、Ti O2 做了简单对比 .结果表明 :所制 Ti O2 / Sn O2 样品为包覆型结构 ,由锐钛矿型 Ti O2 金红石型 Sn O2 组成 ,与 Sn O2 及 Ti O2 晶体粉末相比所制 Ti O2 / Sn O2 包覆粒子光催化活性得到明显提高 .