Type-II Dirac semimetal PtTe2is a promising candidate for various electronic device applications due to its high carrier mobility,high conductivity,and air stability.In this work,we report on the growth of large-scale...Type-II Dirac semimetal PtTe2is a promising candidate for various electronic device applications due to its high carrier mobility,high conductivity,and air stability.In this work,we report on the growth of large-scale PtTe_(2)films by the pulsed laser deposition(PLD)and the comparison of the magnetotransport properties with the PtTe2films grown by the chemical vapor deposition(CVD).The low-temperature Hall curves of the PLD-grown films exhibit a linear behavior,in contrast with the nonlinear characteristic of the Hall behavior observed in CVD-grown films,in which a defect gradient is introduced.Meanwhile,both PtTe2films show weak antilocalization at low temperatures,which is attributed to the strong spin–orbit coupling.展开更多
Nickel oxide(NiO)based gas sensors have at-tracted intense attention due to its high re-sponse to hydrogen sulfide(H_(2)S)gas.It has been demonstrated that the NiO sensors with exposed(111)facet exhibit excellent perf...Nickel oxide(NiO)based gas sensors have at-tracted intense attention due to its high re-sponse to hydrogen sulfide(H_(2)S)gas.It has been demonstrated that the NiO sensors with exposed(111)facet exhibit excellent perfor-mance,but the single-orientation NiO sensors with exposed(111)facet have rarely been studied.In this work,high quality(111)-ori-ented NiO epitaxial films were fabricated by pulsed laser deposition.Detailed crystalline structural information was revealed by using synchrotron based X-ray diffraction(XRD)technology.These NiO thin films show good se-lectivity for H_(2)S gas detection.Without further modification,the highest response to 100 ppm H_(2)S was measured to be 13.07 at 300℃,and limit of detection(LOD)could be as low as 186 ppb.Fitting of the electrical response curves during adsorption and desorption of H_(2)S gas indicates the two-site Langmuir kinetic processes.Combining with XPS and XAS measure-ments,the mechanism was discussed.Density functional theory(DFT)calculations show that NiO with exposed(111)facets has the most negative adsorption energy,indicating more sen-sitive to H_(2)S.These results could inspire more studies of metal oxide semiconductor-based gas sensors with specific surface.展开更多
Optimizing the orientation of β-Ga_(2)O_(3) has emerged as an effective strategy to design high-performance β-Ga_(2)O_(3) device,but the orientation growth mechanism and approach have not been revealed yet.Herein,by...Optimizing the orientation of β-Ga_(2)O_(3) has emerged as an effective strategy to design high-performance β-Ga_(2)O_(3) device,but the orientation growth mechanism and approach have not been revealed yet.Herein,by employing AlN buffer layer,the highly preferred orientation of β-Ga_(2)O_(3)(100)film rather than(-201)film is realized on 4H-SiC substrate at low sputtering power and temperature.Because β-Ga_(2)O_(3)(100)film exhibits a slower growth speed than(-201)film,the former possesses the higher dangling bond density and the lower nucleation energy,and a large conversion barrier exists between these two ori-entations.Moreover,the AlN buffer layer can suppress the surface oxidation of the 4H-SiC substrate and eliminate the strain of β-Ga_(2)O_(3)(100)film,which further reduces the nucleation energy and en-larges the conversion barrier.Meanwhile,the AlN buffer layer can increase the oxygen vacancy formation energy and decrease the oxygen vacancy concentration of β-Ga_(2)O_(3)(100)film.Consequently,the solar-blind photodetector based on the oriented film exhibits the outstanding detectivity of 1.22×10^(12) Jones and photo-to-dark current ratio of 1.11×10^(5),which are the highest among the reported β-Ga_(2)O_(3) solar-blind photodetector on the SiC substrate.Our results offer in-depth insights into the preferred orientation growth mechanism,and provide an effective way to design high-quality β-Ga_(2)O_(3)(100)orientation film and high-performance solar-blind photodetector.展开更多
Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received wides...Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices.During bipolar high electric-field cycling in numbers close to dielectric breakdown,the dielectric permittivity suddenly increases by 30 times after oxygen-vacancy ordering and ferroelectric-to-nonferroelectric phase transition of near-edge plasma-treated Hf_(0.5)Zr_(0.5)O_(2) thin-film capacitors.Here we report a much higher dielectric permittivity of 1466 during downscaling of the capacitor into the diameter of 3.85μm when the ferroelectricity suddenly disappears without high-field cycling.The stored charge density is as high as 183μC cm^(−2) at an operating voltage/time of 1.2 V/50 ns at cycle numbers of more than 10^(12) without inducing dielectric breakdown.The study of synchrotron X-ray micro-diffraction patterns show missing of a mixed tetragonal phase.The image of electron energy loss spectroscopy shows the preferred oxygen-vacancy accumulation at the regions near top/bottom electrodes as well as grain boundaries.The ultrahigh dielectric-permittivity material enables high-density integration of extremely scaled logic and memory devices in the future.展开更多
The pressing demand for ultrathin and flexible shields to counter electromagnetic interference(EMI)has sparked interest in Ti_(3)C_(2)T_(x)MXene materials due to their exceptional electrical conductivity,tunable surfa...The pressing demand for ultrathin and flexible shields to counter electromagnetic interference(EMI)has sparked interest in Ti_(3)C_(2)T_(x)MXene materials due to their exceptional electrical conductivity,tunable surface chemistry,and layered structure.However,pure Ti_(3)C_(2)T_(x)MXene films often lack the mechanical properties required for practical engineering applications,and traditional reinforcement methods tend to reduce electrical conductivity.This work demonstrates an effective strategy to enhance the alignment and densely packed layered structure of Ti_(3)C_(2)T_(x)MXene films by regulating the acidity and alkalinity of Ti_(3)C_(2)T_(x)MXene aqueous solutions.This approach simultaneously improves mechanical strength and electromagnetic interference shielding effectiveness(EMI SE).Compared with original Ti_(3)C_(2)T_(x)MXene films,MXene films modified with ammonia solution(NH_(3)·H_(2)O)via OH-show a significant improvement in tensile strength(27.7±1.9 MPa).Meanwhile,MXene films treated with hydrochloric acid(HCl)via H^(+)reach an even higher tensile strength of 39±1.5 MPa.Moreover,the EMI SE values of the treated MXene films increase significantly,each reaching 66.2 and 58.4 dB.The maximum improvements in EMI SE values for the acid-and alkali-treated samples are 17.9%and 4%,respectively.In conclusion,the simultaneous enhancement of mechanical strength and EMI shielding efficacy highlights the potential of acid-and alkali-treated Ti_(3)C_(2)T_(x)MXene films for applications in ultrathin and flexible EMI shielding materials.展开更多
A photocatalytic oxidation method for determination of chemical oxygen demand (COD) using nano-TiO2 film, based on the use of a nano-TiO2-Ce(SO4)2 system and electrochemical detection, was proposed. The technique ...A photocatalytic oxidation method for determination of chemical oxygen demand (COD) using nano-TiO2 film, based on the use of a nano-TiO2-Ce(SO4)2 system and electrochemical detection, was proposed. The technique was originated from the direct determination of the Ce(Ⅲ) concentration change resulting from photocatalytic oxidation of organic compounds. Ce(Ⅲ), which was produced by photocatalytic reduction of Ce(SO4)2, could be measured at a multi-walled carbon nanotubes (MWNT) chemically modified electrode (CME). The COD values by this method were calculated from the differential pulse voltammetry (DPV) current of Ce(Ⅲ) at the CME. Under the optimal operation conditions, the detection limit of 0.5 mg·L^-1 COD with the linear range of 1-600 mg·L^-1 was achieved. This method was also applied to determination of various COD of ground water and wastewater samples. The resuits were in good agreement with those from the conventional COD methods, i.e., permanganate and dichromate ones.展开更多
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1402404)the National Natural Science Foundation of China(Grant Nos.T2394473,624B2070,and 62274085)。
文摘Type-II Dirac semimetal PtTe2is a promising candidate for various electronic device applications due to its high carrier mobility,high conductivity,and air stability.In this work,we report on the growth of large-scale PtTe_(2)films by the pulsed laser deposition(PLD)and the comparison of the magnetotransport properties with the PtTe2films grown by the chemical vapor deposition(CVD).The low-temperature Hall curves of the PLD-grown films exhibit a linear behavior,in contrast with the nonlinear characteristic of the Hall behavior observed in CVD-grown films,in which a defect gradient is introduced.Meanwhile,both PtTe2films show weak antilocalization at low temperatures,which is attributed to the strong spin–orbit coupling.
基金supported by the National Key Research and Development Program of China(No.2022YFA1603902)the National Natural Science Foundation of China(No.12175235,No.62271462,and No.12004407)。
文摘Nickel oxide(NiO)based gas sensors have at-tracted intense attention due to its high re-sponse to hydrogen sulfide(H_(2)S)gas.It has been demonstrated that the NiO sensors with exposed(111)facet exhibit excellent perfor-mance,but the single-orientation NiO sensors with exposed(111)facet have rarely been studied.In this work,high quality(111)-ori-ented NiO epitaxial films were fabricated by pulsed laser deposition.Detailed crystalline structural information was revealed by using synchrotron based X-ray diffraction(XRD)technology.These NiO thin films show good se-lectivity for H_(2)S gas detection.Without further modification,the highest response to 100 ppm H_(2)S was measured to be 13.07 at 300℃,and limit of detection(LOD)could be as low as 186 ppb.Fitting of the electrical response curves during adsorption and desorption of H_(2)S gas indicates the two-site Langmuir kinetic processes.Combining with XPS and XAS measure-ments,the mechanism was discussed.Density functional theory(DFT)calculations show that NiO with exposed(111)facets has the most negative adsorption energy,indicating more sen-sitive to H_(2)S.These results could inspire more studies of metal oxide semiconductor-based gas sensors with specific surface.
基金supported by the National Key Research and Development Program of China(No.2021YFA0715600)the National Natural Science Foundation of China(Nos.62274125,52192611)+2 种基金the Guangdong Basic and Applied Basic Research Fund(No.2023A1515030084)the Key Research and Development Program of Shaanxi Province(Grant No.2024GX-YBXM-410)the fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202220).
文摘Optimizing the orientation of β-Ga_(2)O_(3) has emerged as an effective strategy to design high-performance β-Ga_(2)O_(3) device,but the orientation growth mechanism and approach have not been revealed yet.Herein,by employing AlN buffer layer,the highly preferred orientation of β-Ga_(2)O_(3)(100)film rather than(-201)film is realized on 4H-SiC substrate at low sputtering power and temperature.Because β-Ga_(2)O_(3)(100)film exhibits a slower growth speed than(-201)film,the former possesses the higher dangling bond density and the lower nucleation energy,and a large conversion barrier exists between these two ori-entations.Moreover,the AlN buffer layer can suppress the surface oxidation of the 4H-SiC substrate and eliminate the strain of β-Ga_(2)O_(3)(100)film,which further reduces the nucleation energy and en-larges the conversion barrier.Meanwhile,the AlN buffer layer can increase the oxygen vacancy formation energy and decrease the oxygen vacancy concentration of β-Ga_(2)O_(3)(100)film.Consequently,the solar-blind photodetector based on the oriented film exhibits the outstanding detectivity of 1.22×10^(12) Jones and photo-to-dark current ratio of 1.11×10^(5),which are the highest among the reported β-Ga_(2)O_(3) solar-blind photodetector on the SiC substrate.Our results offer in-depth insights into the preferred orientation growth mechanism,and provide an effective way to design high-quality β-Ga_(2)O_(3)(100)orientation film and high-performance solar-blind photodetector.
基金supported by the National Key Basic Research Program of China (2022YFA1402904)Basic Research Project of Shanghai Science and Technology Innovation Action (grant number 24CL2900900)the National Natural Science Foundation of China (grant number 61904034)
文摘Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices.During bipolar high electric-field cycling in numbers close to dielectric breakdown,the dielectric permittivity suddenly increases by 30 times after oxygen-vacancy ordering and ferroelectric-to-nonferroelectric phase transition of near-edge plasma-treated Hf_(0.5)Zr_(0.5)O_(2) thin-film capacitors.Here we report a much higher dielectric permittivity of 1466 during downscaling of the capacitor into the diameter of 3.85μm when the ferroelectricity suddenly disappears without high-field cycling.The stored charge density is as high as 183μC cm^(−2) at an operating voltage/time of 1.2 V/50 ns at cycle numbers of more than 10^(12) without inducing dielectric breakdown.The study of synchrotron X-ray micro-diffraction patterns show missing of a mixed tetragonal phase.The image of electron energy loss spectroscopy shows the preferred oxygen-vacancy accumulation at the regions near top/bottom electrodes as well as grain boundaries.The ultrahigh dielectric-permittivity material enables high-density integration of extremely scaled logic and memory devices in the future.
基金supported by the National Key R&D Program of China(No.2019YFA0706802)the National Natural Science Foundation of China(Nos.52273085 and 52303113)Key Scientific Research Projects of Colleges and Universities in Henan Province,China(No.24A430045).
文摘The pressing demand for ultrathin and flexible shields to counter electromagnetic interference(EMI)has sparked interest in Ti_(3)C_(2)T_(x)MXene materials due to their exceptional electrical conductivity,tunable surface chemistry,and layered structure.However,pure Ti_(3)C_(2)T_(x)MXene films often lack the mechanical properties required for practical engineering applications,and traditional reinforcement methods tend to reduce electrical conductivity.This work demonstrates an effective strategy to enhance the alignment and densely packed layered structure of Ti_(3)C_(2)T_(x)MXene films by regulating the acidity and alkalinity of Ti_(3)C_(2)T_(x)MXene aqueous solutions.This approach simultaneously improves mechanical strength and electromagnetic interference shielding effectiveness(EMI SE).Compared with original Ti_(3)C_(2)T_(x)MXene films,MXene films modified with ammonia solution(NH_(3)·H_(2)O)via OH-show a significant improvement in tensile strength(27.7±1.9 MPa).Meanwhile,MXene films treated with hydrochloric acid(HCl)via H^(+)reach an even higher tensile strength of 39±1.5 MPa.Moreover,the EMI SE values of the treated MXene films increase significantly,each reaching 66.2 and 58.4 dB.The maximum improvements in EMI SE values for the acid-and alkali-treated samples are 17.9%and 4%,respectively.In conclusion,the simultaneous enhancement of mechanical strength and EMI shielding efficacy highlights the potential of acid-and alkali-treated Ti_(3)C_(2)T_(x)MXene films for applications in ultrathin and flexible EMI shielding materials.
基金Project supported by the National Natural Science Foundation of China (No. 20327001), the Key Research & Development Program of China (No. 2004BA210A07).
文摘A photocatalytic oxidation method for determination of chemical oxygen demand (COD) using nano-TiO2 film, based on the use of a nano-TiO2-Ce(SO4)2 system and electrochemical detection, was proposed. The technique was originated from the direct determination of the Ce(Ⅲ) concentration change resulting from photocatalytic oxidation of organic compounds. Ce(Ⅲ), which was produced by photocatalytic reduction of Ce(SO4)2, could be measured at a multi-walled carbon nanotubes (MWNT) chemically modified electrode (CME). The COD values by this method were calculated from the differential pulse voltammetry (DPV) current of Ce(Ⅲ) at the CME. Under the optimal operation conditions, the detection limit of 0.5 mg·L^-1 COD with the linear range of 1-600 mg·L^-1 was achieved. This method was also applied to determination of various COD of ground water and wastewater samples. The resuits were in good agreement with those from the conventional COD methods, i.e., permanganate and dichromate ones.