CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed gra...CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.展开更多
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is...The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.展开更多
The expandable graphite(EG)modified TiO_(2) nanocomposites were prepared by the high shearmethod using the TiO_(2) nanoparticles(NPs)and EG as precursors,in which the amount of EG doped in TiO_(2) was 10 wt.%.Followed...The expandable graphite(EG)modified TiO_(2) nanocomposites were prepared by the high shearmethod using the TiO_(2) nanoparticles(NPs)and EG as precursors,in which the amount of EG doped in TiO_(2) was 10 wt.%.Followed by the impregnation method,adjusting the pH of the solution to 10,and using the electrostatic adsorption to achieve spatial confinement,the Pt elementswere mainly distributed on the exposed TiO_(2),thus generating the Pt/10EG-TiO_(2)-10 catalyst.The best CO oxidation activity with the excellent resistance to H_(2)O and SO_(2) was obtained over the Pt/10EG-TiO_(2)-10 catalyst:CO conversion after 36 hr of the reaction was ca.85%under the harsh condition of 10 vol.%H_(2)O and 100 ppm SO_(2) at a high gaseous hourly space velocity(GHSV)of 400,000 hr−1.Physicochemical properties of the catalystswere characterized by various techniques.The results showed that the electrostatic adsorption,which riveted the Pt elements mainly on the exposed TiO_(2) of the support surface,reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs,hence significantly improving CO oxidation activity over the Pt/10EG-TiO_(2)-10 catalyst.The 10 wt.%EG doped in TiO_(2) caused the TiO_(2) support to form a more hydrophobic surface,which reduced the adsorption of H_(2)O and SO_(2) on the catalyst,greatly inhibited deposition of the TiOSO_(4) and formation of the PtSO4 species as well as suppressed the oxidation of SO_(2),thus resulting in an improvement in the resistance to H_(2)O and SO_(2) of the Pt/10EG-TiO_(2)-10 catalyst.展开更多
Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental frien...Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental friendliness.However,its intrinsic low conductivity and sluggish Na^(+)diffusion restricted the fast-charge and low-temperature sodium storage.Herein,an NFPP composite encapsulated by in-situ pyrolytic carbon and coupled with expanded graphite(NFPP@C/EG)was constructed via a sol-gel method followed by a ballmill procedure.Due to the dual-carbon modified strategy,this NFPP@C/EG only enhanced the electronic conductivity,but also endowed more channels for Na^(+)diffusion.As cathode for SIBs,the optimized NFPP(M-NFPP@C/EG)delivers excellent rate capability(capacity of~80.5 mAh/g at 50 C)and outstanding cycling stability(11000 cycles at 50 C with capacity retention of 89.85%).Additionally,cyclic voltammetry(CV)confirmed that its sodium storage behavior is pseudocapacitance-controlled,with in-situ electrochemical impedance spectroscopy(EIS)further elucidating improvements in electrode reaction kinetics.At lower temperatures(0℃),M-NFPP@C/EG demonstrated exceptional cycling performance(8800 cycles at 10 C with capacity retention of 95.81%).Moreover,pouch cells also exhibited excellent stability.This research demonstrates the feasibility of a dual carbon modification strategy in enhancing NFPP and proposes a low-cost,high-rate,and ultra-stable cathode material for SIBs.展开更多
As a potential candidate for high-energy lithium-ion batteries (LIBs),nickel-rich cathodes encounter significant challenges due to structural instability arising from interphases.In this work,tris(ethenyl)-tris(etheny...As a potential candidate for high-energy lithium-ion batteries (LIBs),nickel-rich cathodes encounter significant challenges due to structural instability arising from interphases.In this work,tris(ethenyl)-tris(ethenyl)silyloxysilane (HVDS) with Si–O bonds and unsaturated bonds is introduced as additive designing functional electrolyte to enhance the long-cycle stability of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)/graphite LIBs at elevated temperature.The preferential oxidization and component of HVDS facilitate the generation of an extremely robust and ultra-thin cathode electrolyte interphase (CEI) comprising a chemically bonded silane polymer.This interphase effectively suppresses side-reactions of electrolyte,mitigates HF erosion,and reduces irreversible phase transitions.Benefiting from the above merits,the batteries’capacity retention shows a remarkable increase from 20% to 92% after nearly 1550 cycles conducted at room temperature.And under elevated temperature conditions (45℃),the capacity retention remains 80%after 670 cycles,in comparison to a drop to 80%after only 250 cycles with the blank electrolyte.These findings highlight HVDS’s potential to functionalize the electrolyte,marking a breakthrough in improving the longevity and reliability of NCM811/graphite LIBs under challenging conditions.展开更多
To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake grap...To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively.展开更多
Four kinds of Cu-based composites with different mass ratios of graphite and WS2 as lubricants were fabricated by hot-pressing method. Electrical sliding wear behaviors of the composites were investigated using a bloc...Four kinds of Cu-based composites with different mass ratios of graphite and WS2 as lubricants were fabricated by hot-pressing method. Electrical sliding wear behaviors of the composites were investigated using a block-on-ring tribometer rubbing against Cu-5%Ag alloy ring. The results demonstrated that 800 ~C was the optimum sintering temperature for Cu-graphite-WS2 dual-lubricant composites to obtain the best comprehensive properties of mechanical strength and lubrication performance. Contact voltage drops of the Cu-based composites increased with increasing the mass ratio of WS2 to graphite. The Cu-based composite with 20% graphite and 10% WS2 showed the best wear resistance due to the excellent synergetic lubricating effect of graphite and WS2. The reasonable addition of WS2 into the Cu-graphite composite can remarkably improve the wear resistance without much rise of electrical energy loss which provides a novel principle of designing suitable sliding electrical contact materials for industrial applications.展开更多
In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coa...In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coatings were prepared by plasma spray and their tribological behavior and mechanisms were investigated. The results show that the friction coefficients of the composite coatings are in the range of 0.22-0.288, which are reduced by 25.9% to 53% compared with those of the pure Ni-base alloy coatings, and the wear rates of the former are 18.6%-70.1% less than those of the latter. When wear against GCr15 steel balls, a transferred layer mainly composed of ferric oxides, graphite and CaF2 may gradually develop on the worn surface of the composite coatings, which made the friction and wear between GCr15 steel ball and the composite coatings change into that between the former and the transferred layer. So the friction coefficients and the wear lubrication effect of the transferred layer. The main wear layer in friction process. rates of the composite coatings are greatly reduced because of the solid mechanism of the composite coatings is delamination of the transferred展开更多
A novel nano-SnO2/graphite electrode has been prepared via polishing procedure to produce active and stable surface. The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbic acid...A novel nano-SnO2/graphite electrode has been prepared via polishing procedure to produce active and stable surface. The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbic acid into two well-defined peaks by 230 mV. The mechanism of discrimination of dopamine from ascorbic acid is discussed. Dopamine and ascorbic acid can be determined simultaneously with the modified electrode. The electrode shows good sensitivity, selectivity and stability.展开更多
Modified coatings including carbide of iron, nickel, chromium, silicon, and titanium are obtained on 9Cr18 stainless steel surface by laser alloying. The processing method, the microstructure, the interface, the tribo...Modified coatings including carbide of iron, nickel, chromium, silicon, and titanium are obtained on 9Cr18 stainless steel surface by laser alloying. The processing method, the microstructure, the interface, the tribological properties, and the forming mechanisms of the coatings are analyzed. The results show that the microstructure of the alloyed coatings is mainly irregular FeC crystals. Carbides of chromium and iron are around the FeC crystals. Small granular TiC disperses in the alloyed coatings. The microhardness of the alloyed coatings is greatly improved because of the occurrence of carbide with high hardness. At the same time, the wear resistance of the alloyed coatings are higher than that of 9Cr18 stainless steel.展开更多
A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-...A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 m Ah g^(-1)at a current of 1 A g^(-1)after 800 cycles. This good performance may beattributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure,efficiently accommodate volume changes in the Ni Fe_2O_4-based anodes, and alleviate aggregation of Ni Fe_2O_4 nanoparticles.展开更多
Silver matrix composite brushes were fabricated by means of powder metallurgy, which included pressing at 300 MPa and then sintering for 1 h in pure H2 protective atmosphere at 700 ℃ and repressing at 500 MPa. Four k...Silver matrix composite brushes were fabricated by means of powder metallurgy, which included pressing at 300 MPa and then sintering for 1 h in pure H2 protective atmosphere at 700 ℃ and repressing at 500 MPa. Four kinds composites with different compositions were produced, and the mechanical properties and electrical wear performance were investigated. The results showed that the composite added with carbon nanotubes had a higher hardness and strength, a lower contact voltage drop and an excellent anti-wear property in electrical sliding wear, because of the reinforcement ability of carbon nanotubes. Adding graphite to the composite also decreased the wear loss and contact voltage drop, because graphite had an electrical current conducting ability which not only made the current pass the lubricating films easily but also eliminated and reduced the arc and spark effectively.展开更多
By loading nanometer anatase onto exfoliated graphite with the sol-gel method, exfoliated graphite-TiO2 composite (EG-TiO2) can be prepared, which can adsorb oil and can also degrade oil. In a technologic condition ...By loading nanometer anatase onto exfoliated graphite with the sol-gel method, exfoliated graphite-TiO2 composite (EG-TiO2) can be prepared, which can adsorb oil and can also degrade oil. In a technologic condition for preparing EG-TiO2, the impregnated number of times is the most important factor to influence oil-adsorbing capability, that is, when the impregnated number of times increases, the amount of saturation-adsorbed oil decreases. The study of EG-TiO2 photocatalytic degradation of machine oil based on the weight-loss method and infrared spectrum method indicates that EG-TiO2 has obvious effect of photocatalytic degradation for machine oil. Its performance is superior to pure nanometer TiO2 powder because nanometer TiO2 in EG-TiO2 has three-dimension laminar structure and comparatively high adsorption capability.展开更多
With constant enlargement of the application areas of the spherical plain bearings,higher quality lubrication of the bearings is required.To solve the lubricating problems of spherical plain bearings under high temper...With constant enlargement of the application areas of the spherical plain bearings,higher quality lubrication of the bearings is required.To solve the lubricating problems of spherical plain bearings under high temperature,high vacuum,high speed,heavy loads and strong oxidation conditions,it is urgent for us to develop more excellent self-lubricating technologies.In this paper,the bonded solid lubricant coatings,which use inorganic phosphate as the binder,the mixture of MoS2 and graphite with two different weight proportions as the solid lubricant,are prepared by spraying under three different spray gun pressures.The bonding strength tests on the coatings show that the best spraying pressure is 0.2 MPa and the better mixing proportion of MoS2 to Graphite is 3:1.Then for the radial spherical plain bearings with steel/steel friction pair,after the coatings are made on the inner ring outer surfaces,the friction coefficient,the wear loss and the friction temperature of the bearings under four oscillating frequencies are investigated by a self-made tribo-tester.The test results,SEM of the worn morphologies and EDS of worn areas show that tribological properties of the bearing are obviously improved by the bonded solid lubricant coatings.When sprayed under the spray gun pressure of 0.2 MPa,the bearings have better anti-friction and anti-wear properties than those sprayed under 0.1 MPa and 0.3 MPa.Further as proved from the XPS analysis,between the coating with 3:1 mixing ratio of MoS2 to Graphite and the coating with 1:1 ratio,the former has less oxidation occurred on the surface and therefore has better tribological characteristics than the latter.This paper provides a reference to developing a new product of the radial spherical plain bearings with high bonding strength,oxidation resistance and abrasion resistance.展开更多
MoS2 is a promising anode material for sodium ion batteries owing to its two-dimensional layered structure and high specific capacity. But it still exhibits a poor cycle stability and limited rate capability for Na+ ...MoS2 is a promising anode material for sodium ion batteries owing to its two-dimensional layered structure and high specific capacity. But it still exhibits a poor cycle stability and limited rate capability for Na+ storage because of its poor electrical conductivity and structural instability. In this work, MoS2/graphite composite is fabricated by mechanically delaminated and restacked MoS2 and graphite to form two-dimensional composite layers. The graphite sheets will improve electrical conductivity and prevent the aggregation as well as structure collapse of the MoS2 layers during charge-discharge process. The MoS2/graphite composite exhibits excellent Na+ storage properties. It delivers a high discharge specific capacity of 358.2 mAh/g at a current density of 100 mA]g in the first discharge process and with capacity retention of 68.1% after 800 cycles (retains 244 mAh/g). The average discharge specific capacities retain 250.9 and 225.4 mAh/g corresponding to the current densities of 100 and 1000 mA]g, showing excellent rate capability. The improved electrochemical performance is attributed to the improved electrical conductivity and structural stability after composition of graphite sheets. The study demonstrates a new research strategy for improving sodium ion storage properties of Mo52.展开更多
In order to improve the wetting properties of graphite with Al melt and reduce the oxidation of the graphite, by which the segregation of components during the liquid-stir-casting process could be prevented. In this p...In order to improve the wetting properties of graphite with Al melt and reduce the oxidation of the graphite, by which the segregation of components during the liquid-stir-casting process could be prevented. In this paper, a uniform thin nano-film of CeO2, about 20 nm thick, was successfully prepared onto graphite powder surface by heterogeneous nu-cleation process. The results show that an obvious chemical reaction did exit between CeO2 film and graphite with the formation of Ce-O-C bond, leading to a shift of the binding energy of C and Ce. The cover with CeO2 film illustrates a distinct change of surface state of graphite with a decrease of angle of contact.展开更多
The antiwear and antifriction coating, which contains TiB2 and Nickel-coated graphite, has been obtained on stainless steel 9Cr18 by laser cladding. The processing method, microstructure, interface, microhardness, tri...The antiwear and antifriction coating, which contains TiB2 and Nickel-coated graphite, has been obtained on stainless steel 9Cr18 by laser cladding. The processing method, microstructure, interface, microhardness, tribological properties and the forming mechanisms of the coating are analyzed. Results show that the microstructure of the clad coating are mainly long plume-like primary phase sosoloid Ni-Fe which form the matrix framework, while the in-situ anomalous synthetical TiC grains and uhrafine TiB2 grains uniformly disperse among the framework. The hardness and wear resistance of the coating has been greatly improved, which can be attributed to the reinforcement mechanism of TiC, TiB2, FeC, Fe3C and Cr23 C6. etc. At the same time, the coating has friction-reducing ability.展开更多
This work develops 2-Phenyl-1H-imidazole-1-sulfonate(PHIS)as a multi-functional electrolyte additive for H2O/HF scavenging and film formation to improve the high temperature performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_...This work develops 2-Phenyl-1H-imidazole-1-sulfonate(PHIS)as a multi-functional electrolyte additive for H2O/HF scavenging and film formation to improve the high temperature performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/graphite batteries.After 450 cycles at room temperature(25℃),the discharge capacity retentions of batteries with blank and PHIS-containing electrolyte are 56.03%and 94.92%respectively.After 230 cycles at high temperatures(45℃),their values are 75.30%and 88.38%respectively.The enhanced electrochemical performance of the batteries with PHIS-containing electrolyte is supported by the spectroscopic characterization and theoretical calculations.It is demonstrated that this PHIS electrolyte additive can facilitate the construction of the electrode interface films,remove the H2O/HF in the electrolyte,and improve the electrochemical performance of the batteries.This work not only develops a sulfonate-based electrolyte but also can stimulate new ideas of functional additives to improve the battery performance.展开更多
文摘CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.
基金supported by the Shanxi Province Central Guidance Fund for Local Science and Technology Development Project(YDZJSX2024D030)the National Natural Science Foundation of China(22075197,22278290)+2 种基金the Shanxi Province Key Research and Development Program Project(2021020660301013)the Shanxi Provincial Natural Science Foundation of China(202103021224079)the Research and Development Project of Key Core and Common Technology of Shanxi Province(20201102018).
文摘The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.
基金supported by the National Key R&D Program of China (No.2017YFC0210303).
文摘The expandable graphite(EG)modified TiO_(2) nanocomposites were prepared by the high shearmethod using the TiO_(2) nanoparticles(NPs)and EG as precursors,in which the amount of EG doped in TiO_(2) was 10 wt.%.Followed by the impregnation method,adjusting the pH of the solution to 10,and using the electrostatic adsorption to achieve spatial confinement,the Pt elementswere mainly distributed on the exposed TiO_(2),thus generating the Pt/10EG-TiO_(2)-10 catalyst.The best CO oxidation activity with the excellent resistance to H_(2)O and SO_(2) was obtained over the Pt/10EG-TiO_(2)-10 catalyst:CO conversion after 36 hr of the reaction was ca.85%under the harsh condition of 10 vol.%H_(2)O and 100 ppm SO_(2) at a high gaseous hourly space velocity(GHSV)of 400,000 hr−1.Physicochemical properties of the catalystswere characterized by various techniques.The results showed that the electrostatic adsorption,which riveted the Pt elements mainly on the exposed TiO_(2) of the support surface,reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs,hence significantly improving CO oxidation activity over the Pt/10EG-TiO_(2)-10 catalyst.The 10 wt.%EG doped in TiO_(2) caused the TiO_(2) support to form a more hydrophobic surface,which reduced the adsorption of H_(2)O and SO_(2) on the catalyst,greatly inhibited deposition of the TiOSO_(4) and formation of the PtSO4 species as well as suppressed the oxidation of SO_(2),thus resulting in an improvement in the resistance to H_(2)O and SO_(2) of the Pt/10EG-TiO_(2)-10 catalyst.
基金supported by the National Key Research and Development Program of China(No.2022YFB2502000)the National Natural Science Foundation of China(Nos.U21A20332,51771076,U21A200970,52301266)the Science and Technology Planning Project of Guangzhou(No.2024A04J3332)。
文摘Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental friendliness.However,its intrinsic low conductivity and sluggish Na^(+)diffusion restricted the fast-charge and low-temperature sodium storage.Herein,an NFPP composite encapsulated by in-situ pyrolytic carbon and coupled with expanded graphite(NFPP@C/EG)was constructed via a sol-gel method followed by a ballmill procedure.Due to the dual-carbon modified strategy,this NFPP@C/EG only enhanced the electronic conductivity,but also endowed more channels for Na^(+)diffusion.As cathode for SIBs,the optimized NFPP(M-NFPP@C/EG)delivers excellent rate capability(capacity of~80.5 mAh/g at 50 C)and outstanding cycling stability(11000 cycles at 50 C with capacity retention of 89.85%).Additionally,cyclic voltammetry(CV)confirmed that its sodium storage behavior is pseudocapacitance-controlled,with in-situ electrochemical impedance spectroscopy(EIS)further elucidating improvements in electrode reaction kinetics.At lower temperatures(0℃),M-NFPP@C/EG demonstrated exceptional cycling performance(8800 cycles at 10 C with capacity retention of 95.81%).Moreover,pouch cells also exhibited excellent stability.This research demonstrates the feasibility of a dual carbon modification strategy in enhancing NFPP and proposes a low-cost,high-rate,and ultra-stable cathode material for SIBs.
基金financially supported by the Scientific Research Innovation Project of Graduate School of South China Normal University (No. 2024KYLX081)。
文摘As a potential candidate for high-energy lithium-ion batteries (LIBs),nickel-rich cathodes encounter significant challenges due to structural instability arising from interphases.In this work,tris(ethenyl)-tris(ethenyl)silyloxysilane (HVDS) with Si–O bonds and unsaturated bonds is introduced as additive designing functional electrolyte to enhance the long-cycle stability of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)/graphite LIBs at elevated temperature.The preferential oxidization and component of HVDS facilitate the generation of an extremely robust and ultra-thin cathode electrolyte interphase (CEI) comprising a chemically bonded silane polymer.This interphase effectively suppresses side-reactions of electrolyte,mitigates HF erosion,and reduces irreversible phase transitions.Benefiting from the above merits,the batteries’capacity retention shows a remarkable increase from 20% to 92% after nearly 1550 cycles conducted at room temperature.And under elevated temperature conditions (45℃),the capacity retention remains 80%after 670 cycles,in comparison to a drop to 80%after only 250 cycles with the blank electrolyte.These findings highlight HVDS’s potential to functionalize the electrolyte,marking a breakthrough in improving the longevity and reliability of NCM811/graphite LIBs under challenging conditions.
文摘To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively.
基金Projects(9102601860979017) supported by the National Natural Science Foundation of ChinaProject(20110111110015) supported by the Doctoral Fund of Ministry of Education of China
文摘Four kinds of Cu-based composites with different mass ratios of graphite and WS2 as lubricants were fabricated by hot-pressing method. Electrical sliding wear behaviors of the composites were investigated using a block-on-ring tribometer rubbing against Cu-5%Ag alloy ring. The results demonstrated that 800 ~C was the optimum sintering temperature for Cu-graphite-WS2 dual-lubricant composites to obtain the best comprehensive properties of mechanical strength and lubrication performance. Contact voltage drops of the Cu-based composites increased with increasing the mass ratio of WS2 to graphite. The Cu-based composite with 20% graphite and 10% WS2 showed the best wear resistance due to the excellent synergetic lubricating effect of graphite and WS2. The reasonable addition of WS2 into the Cu-graphite composite can remarkably improve the wear resistance without much rise of electrical energy loss which provides a novel principle of designing suitable sliding electrical contact materials for industrial applications.
文摘In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coatings were prepared by plasma spray and their tribological behavior and mechanisms were investigated. The results show that the friction coefficients of the composite coatings are in the range of 0.22-0.288, which are reduced by 25.9% to 53% compared with those of the pure Ni-base alloy coatings, and the wear rates of the former are 18.6%-70.1% less than those of the latter. When wear against GCr15 steel balls, a transferred layer mainly composed of ferric oxides, graphite and CaF2 may gradually develop on the worn surface of the composite coatings, which made the friction and wear between GCr15 steel ball and the composite coatings change into that between the former and the transferred layer. So the friction coefficients and the wear lubrication effect of the transferred layer. The main wear layer in friction process. rates of the composite coatings are greatly reduced because of the solid mechanism of the composite coatings is delamination of the transferred
文摘A novel nano-SnO2/graphite electrode has been prepared via polishing procedure to produce active and stable surface. The modified electrode resolves the overlapping voltammetric response of dopamine and ascorbic acid into two well-defined peaks by 230 mV. The mechanism of discrimination of dopamine from ascorbic acid is discussed. Dopamine and ascorbic acid can be determined simultaneously with the modified electrode. The electrode shows good sensitivity, selectivity and stability.
基金Item Sponsored by Youth Science Foundation of Heilongjiang(QC06C023)
文摘Modified coatings including carbide of iron, nickel, chromium, silicon, and titanium are obtained on 9Cr18 stainless steel surface by laser alloying. The processing method, the microstructure, the interface, the tribological properties, and the forming mechanisms of the coatings are analyzed. The results show that the microstructure of the alloyed coatings is mainly irregular FeC crystals. Carbides of chromium and iron are around the FeC crystals. Small granular TiC disperses in the alloyed coatings. The microhardness of the alloyed coatings is greatly improved because of the occurrence of carbide with high hardness. At the same time, the wear resistance of the alloyed coatings are higher than that of 9Cr18 stainless steel.
基金support from the National Basic Research Program of China (2014CB239702)National Natural Science Foundation of China (Grant Nos. 21371121, 21506126 and 51502174)+1 种基金Shenzhen Science and Technology Research Foundation (Grant Nos. JCYJ20150324141711645,JCYJ20150324141711616 and JCYJ20150626090504916)China Postdoctoral Science Foundation (2015 M582401 and 2015 M572349)
文摘A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 m Ah g^(-1)at a current of 1 A g^(-1)after 800 cycles. This good performance may beattributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure,efficiently accommodate volume changes in the Ni Fe_2O_4-based anodes, and alleviate aggregation of Ni Fe_2O_4 nanoparticles.
基金supported by National Natural Science Foundation of China(No50741003)Key Project of Science and Technology of Ministry of Education of China (No107066)Anhui Provincial Natural Science Foundation(No070414181)
文摘Silver matrix composite brushes were fabricated by means of powder metallurgy, which included pressing at 300 MPa and then sintering for 1 h in pure H2 protective atmosphere at 700 ℃ and repressing at 500 MPa. Four kinds composites with different compositions were produced, and the mechanical properties and electrical wear performance were investigated. The results showed that the composite added with carbon nanotubes had a higher hardness and strength, a lower contact voltage drop and an excellent anti-wear property in electrical sliding wear, because of the reinforcement ability of carbon nanotubes. Adding graphite to the composite also decreased the wear loss and contact voltage drop, because graphite had an electrical current conducting ability which not only made the current pass the lubricating films easily but also eliminated and reduced the arc and spark effectively.
文摘By loading nanometer anatase onto exfoliated graphite with the sol-gel method, exfoliated graphite-TiO2 composite (EG-TiO2) can be prepared, which can adsorb oil and can also degrade oil. In a technologic condition for preparing EG-TiO2, the impregnated number of times is the most important factor to influence oil-adsorbing capability, that is, when the impregnated number of times increases, the amount of saturation-adsorbed oil decreases. The study of EG-TiO2 photocatalytic degradation of machine oil based on the weight-loss method and infrared spectrum method indicates that EG-TiO2 has obvious effect of photocatalytic degradation for machine oil. Its performance is superior to pure nanometer TiO2 powder because nanometer TiO2 in EG-TiO2 has three-dimension laminar structure and comparatively high adsorption capability.
基金Supported by National Natural Science Foundation of China(Grant No.51275155)Henan Provincial Science and Technology Innovation Outstanding Talent Project of China(Grant No.154200510013)Henan Provincial Innovation and Research Team of Science and Technology in Universities of China(Grant No.13IRTSTHN025)
文摘With constant enlargement of the application areas of the spherical plain bearings,higher quality lubrication of the bearings is required.To solve the lubricating problems of spherical plain bearings under high temperature,high vacuum,high speed,heavy loads and strong oxidation conditions,it is urgent for us to develop more excellent self-lubricating technologies.In this paper,the bonded solid lubricant coatings,which use inorganic phosphate as the binder,the mixture of MoS2 and graphite with two different weight proportions as the solid lubricant,are prepared by spraying under three different spray gun pressures.The bonding strength tests on the coatings show that the best spraying pressure is 0.2 MPa and the better mixing proportion of MoS2 to Graphite is 3:1.Then for the radial spherical plain bearings with steel/steel friction pair,after the coatings are made on the inner ring outer surfaces,the friction coefficient,the wear loss and the friction temperature of the bearings under four oscillating frequencies are investigated by a self-made tribo-tester.The test results,SEM of the worn morphologies and EDS of worn areas show that tribological properties of the bearing are obviously improved by the bonded solid lubricant coatings.When sprayed under the spray gun pressure of 0.2 MPa,the bearings have better anti-friction and anti-wear properties than those sprayed under 0.1 MPa and 0.3 MPa.Further as proved from the XPS analysis,between the coating with 3:1 mixing ratio of MoS2 to Graphite and the coating with 1:1 ratio,the former has less oxidation occurred on the surface and therefore has better tribological characteristics than the latter.This paper provides a reference to developing a new product of the radial spherical plain bearings with high bonding strength,oxidation resistance and abrasion resistance.
基金supported by the National Natural Science Foundation of China(no.21403099)the Natural Science Funds for Distinguished Young Scholars of Gansu Province(no.1606RJDA320)
文摘MoS2 is a promising anode material for sodium ion batteries owing to its two-dimensional layered structure and high specific capacity. But it still exhibits a poor cycle stability and limited rate capability for Na+ storage because of its poor electrical conductivity and structural instability. In this work, MoS2/graphite composite is fabricated by mechanically delaminated and restacked MoS2 and graphite to form two-dimensional composite layers. The graphite sheets will improve electrical conductivity and prevent the aggregation as well as structure collapse of the MoS2 layers during charge-discharge process. The MoS2/graphite composite exhibits excellent Na+ storage properties. It delivers a high discharge specific capacity of 358.2 mAh/g at a current density of 100 mA]g in the first discharge process and with capacity retention of 68.1% after 800 cycles (retains 244 mAh/g). The average discharge specific capacities retain 250.9 and 225.4 mAh/g corresponding to the current densities of 100 and 1000 mA]g, showing excellent rate capability. The improved electrochemical performance is attributed to the improved electrical conductivity and structural stability after composition of graphite sheets. The study demonstrates a new research strategy for improving sodium ion storage properties of Mo52.
基金Project supported by the National '973' Project (G19990649)
文摘In order to improve the wetting properties of graphite with Al melt and reduce the oxidation of the graphite, by which the segregation of components during the liquid-stir-casting process could be prevented. In this paper, a uniform thin nano-film of CeO2, about 20 nm thick, was successfully prepared onto graphite powder surface by heterogeneous nu-cleation process. The results show that an obvious chemical reaction did exit between CeO2 film and graphite with the formation of Ce-O-C bond, leading to a shift of the binding energy of C and Ce. The cover with CeO2 film illustrates a distinct change of surface state of graphite with a decrease of angle of contact.
文摘The antiwear and antifriction coating, which contains TiB2 and Nickel-coated graphite, has been obtained on stainless steel 9Cr18 by laser cladding. The processing method, microstructure, interface, microhardness, tribological properties and the forming mechanisms of the coating are analyzed. Results show that the microstructure of the clad coating are mainly long plume-like primary phase sosoloid Ni-Fe which form the matrix framework, while the in-situ anomalous synthetical TiC grains and uhrafine TiB2 grains uniformly disperse among the framework. The hardness and wear resistance of the coating has been greatly improved, which can be attributed to the reinforcement mechanism of TiC, TiB2, FeC, Fe3C and Cr23 C6. etc. At the same time, the coating has friction-reducing ability.
基金financially supported by the Scientific and Technological Plan Projects of Guangzhou City(202103040001)。
文摘This work develops 2-Phenyl-1H-imidazole-1-sulfonate(PHIS)as a multi-functional electrolyte additive for H2O/HF scavenging and film formation to improve the high temperature performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/graphite batteries.After 450 cycles at room temperature(25℃),the discharge capacity retentions of batteries with blank and PHIS-containing electrolyte are 56.03%and 94.92%respectively.After 230 cycles at high temperatures(45℃),their values are 75.30%and 88.38%respectively.The enhanced electrochemical performance of the batteries with PHIS-containing electrolyte is supported by the spectroscopic characterization and theoretical calculations.It is demonstrated that this PHIS electrolyte additive can facilitate the construction of the electrode interface films,remove the H2O/HF in the electrolyte,and improve the electrochemical performance of the batteries.This work not only develops a sulfonate-based electrolyte but also can stimulate new ideas of functional additives to improve the battery performance.