期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Higher order Dirac structure and Nambu-Poisson geometry
1
作者 Yanhui BI Jia LI 《Frontiers of Mathematics in China》 CSCD 2024年第1期37-56,共20页
This paper studies the properties of Nambu-Poisson geometry from the(n-l,k)-Dirac structure on a smooth manifold M.Firstly,we examine the automorphism group and infinitesimal on higher order Courant algebroid,to prove... This paper studies the properties of Nambu-Poisson geometry from the(n-l,k)-Dirac structure on a smooth manifold M.Firstly,we examine the automorphism group and infinitesimal on higher order Courant algebroid,to prove the integrability of infinitesimal Courant automorphism.Under the transversal smooth morphismΦ:N-→M and anchor mapping of M on(n-1,k)-Dirac structure,it's holds that the pullback(n-1,k)-Dirac structure on M turns out an(n-1,k)-Dirac structure on N.Then,given that the graph of Nambu-Poisson structure takes the form of(n-1,n-2)-Dirac structure,it follows that the single parameter variety of Nambu-Poisson structure is related to one variety closed n-symplectic form under gauge transformation.WhenΦ:N-→M is taken as the immersion mapping of(n-1)-cosymplectic submanifold,the pullback Nambu-Poisson structure on M turns out the Nambu-Poisson structure on N.Finally,we discuss the(n-1,O)-Dirac structure on M can be integrated into a problem of(n-1)-presymplectic groupoid.Under the mapping II:M-→M/H,the corresponding(n-1,O)-Dirac structure is F and E respectively.If E can be integrated into(n-1)-presymplectic groupoid(g,2),then there exists the only,such that the corresponding integral of F is(n-1)-presymplectic groupoid(g,). 展开更多
关键词 nambu-poisson structure n-symplectic structure (n-1 k)-Dirac structure INTEGRABILITY
原文传递
高阶狄拉克结构与南部—泊松几何 被引量:1
2
作者 毕艳会 李佳 《数学进展》 CSCD 北大核心 2023年第5期867-882,共16页
本文从光滑流形M上的(n-1,k)-狄拉克结构出发研究南部—泊松几何的性质.首先研究高阶Courant代数胚上自同构群和无穷小,证明无穷小Courant自同构的可积性.在光滑态射φ:N→M与M上(n-1,k)-狄拉克结构的锚映射横截的条件下,得到M上(n-1,k)... 本文从光滑流形M上的(n-1,k)-狄拉克结构出发研究南部—泊松几何的性质.首先研究高阶Courant代数胚上自同构群和无穷小,证明无穷小Courant自同构的可积性.在光滑态射φ:N→M与M上(n-1,k)-狄拉克结构的锚映射横截的条件下,得到M上(n-1,k)-狄拉克结构的拉回为N上的(n-1,k)-狄拉克结构.其次给出南部—泊松结构的图是(n-1,n-2)-狄拉克结构,得到南部—泊松结构的单参数簇在规范变换下与一簇闭的n-辛形式有关.当φ:N→M作为余(n-1)-辛子流形的浸入映射时,M上南部—泊松结构的拉回为N上的南部—泊松结构.最后讨论了M上的(n-1,0)-狄拉克结构可积分为(n-1)-预辛群胚的问题.在映射Π:M→M/H下,其对应的(n-1,0)-狄拉克结构分别是F和E.如果E可积分为(n-1)-预辛群胚(g,ω),则存在唯一的ω,使F对应积分为(n-1)-预辛群胚(g,ω). 展开更多
关键词 南部—泊松结构 n-辛结构 (n-1 k)-狄拉克结构 可积性
原文传递
On higher analogues of Courant algebroids 被引量:4
3
作者 BI YanHui1 & SHENG YunHe2,3 1Department of Mathematics and LMAM, Peking University, Beijing 100871, China 2School of Mathematics, Jilin University, Changchun 130012, China 3School of Mathematics, Dalian University of Technology, Dalian 116024, China 《Science China Mathematics》 SCIE 2011年第3期437-447,共11页
In this paper, we study the algebraic properties of the higher analogues of Courant algebroid structures on the direct sum bundle TM ⊕∧nT*M for an m-dimensional manifold. As an application, we revisit Nambu-Poisson ... In this paper, we study the algebraic properties of the higher analogues of Courant algebroid structures on the direct sum bundle TM ⊕∧nT*M for an m-dimensional manifold. As an application, we revisit Nambu-Poisson structures and multisymplectic structures. We prove that the graph of an (n + 1)-vector field π is closed under the higher-order Dorfman bracket iff π is a Nambu-Poisson structure. Consequently, there is an induced Leibniz algebroid structure on ∧nT*M. The graph of an (n+1)-form ω is closed under the higher-order Dorfman bracket iff ω is a premultisymplectic structure of order n, i.e., dω = 0. Furthermore, there is a Lie algebroid structure on the admissible bundle A ∧nT*M. In particular, for a 2-plectic structure, it induces the Lie 2-algebra structure given in (Baez, Hoffnung and Rogers, 2010). 展开更多
关键词 higher analogues of Courant algebroids multisymplectic structures nambu-poisson structures Leibniz algebroids
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部