The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and el...The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and electrochemical behaviors of Li[Ni1/3Mn1/3Co1/3]O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and electrochemical charge/discharge cycling tests. The results show that the difference in pretreatment process results in the difference in compound Li[Ni1/3Co1/3Mn1/3]O2 structure, morphology and the electrochemical characteristics. The Li[Ni1/3Mn1/3Co1/3]O2 prepared by solution phase route maintains the uniform spherical morphology of the [Ni1/3Co1/3Mn1/3]3O4, and it exhibits a higher capacity retention and better rate capability than that prepared by ball mill method. The initial discharge capacity of this sample reaches 178 mA-h/g and the capacity retention after 50 cycles is 98.7% at a current density of 20 mA/g. Moreover, it delivers high discharge capacity of 135 mA-h/g at a current density of 1 000 mA/g.展开更多
Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation me...Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation method. The sample of x = 0.02 demonstrates a large discharge capacity of226 mAh g^(-1) over 100 cycles at 0.1 C and excellent rate performance with discharge capacity of 96 mAh g-1 at 5.0 C and room temperature. Particularly, this material shows much enhanced electrochemical performances even at high temperature of 55 ℃. It delivers a quite high discharge capacity of 233.7 mAh·g^(-1) at 1.0 C with capacity retention as high as 97.9% after 100 cycles. The results demonstrate that the fluorine incorporation stabilizes the cathode structure and maintains stable interfacial resistances.展开更多
Layered cathode materials of high-temperature lithium batteries, Li Ni1/3Mn1/3Co1/3O2 are synthesized by a sol-gel method with variation in final sintering temperature for borehole applications. The structure, morphol...Layered cathode materials of high-temperature lithium batteries, Li Ni1/3Mn1/3Co1/3O2 are synthesized by a sol-gel method with variation in final sintering temperature for borehole applications. The structure, morphology and high-temperature discharge performance of these resulting products are investigated by X-Ray Diffraction(XRD), scanning electron microscopy(SEM), laser particle size analysis, galvanostatic and pulse discharge. The results of structural analysis indicate that the sample sintered at 800 ℃ has the characteristics of good crystallinity, narrow size distribution and large specific surface area at the same time. The discharge experiments also indicate that this sample has the best electrochemical properties, with the maximum discharge capacities of 314.57 and 434.14 m Ah·g-1 at 200 and 300 ℃ respectively and the minimum cell internal resistances at both temperatures.展开更多
Spherical Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 was prepared via the homogenous precursors produced by solution spray-drying method. The precursors were sintered at different temperatures between 600 and 1 000 ℃ for 10 h. ...Spherical Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 was prepared via the homogenous precursors produced by solution spray-drying method. The precursors were sintered at different temperatures between 600 and 1 000 ℃ for 10 h. The impacts of different sintering temperatures on the structure and electrochemical performances of Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 were compared by means of X-ray diffractometry(XRD), scanning electron microscopy(SEM), and charge/discharge test as cathode materials for lithium ion batteries. The experimental results show that the spherical morphology of the spray-dried powers maintains during the subsequent heat treatment and the specific capacity increases with rising sintering temperature. When the sintering temperature rises up to 900 ℃ , Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 attains a reversible capacity of 153 mA·h/g between 3.00 and 4.35 V at 0.2C rate with excellent cyclability.展开更多
Mg3(PO4)2-coated Li1.05Ni1/3Mn1/33Co1/3O2 cathode materials were synthesized via co-precipitation method. The morphology, structure, electrochemical performance and thermal stability were characterized by scanning e...Mg3(PO4)2-coated Li1.05Ni1/3Mn1/33Co1/3O2 cathode materials were synthesized via co-precipitation method. The morphology, structure, electrochemical performance and thermal stability were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), charge/discharge cycling and differential scanning calorimeter (DSC). SEM analysis shows that Mg3(PO4)2-coating changes the morphologies of their particles and increases the grains size. XRD and CV results show that Mg3(PO4)2-coating powder is homogeneous and has better layered structure than the bare one. Mg3(PO4)2-coating improved high rate discharge capacity and cycle-life performance. The reason why the cycling performance of Mg3(PO4)2-coated sample at 55 ℃ was better than that of room temperature was the increasing of lithium-ion diffusion rate and charge transfer rate with temperature rising. Mg3(PO4)2-coating improved the cathode thermal stability, and the result was consistent with thermal abuse tests using Li-ion cells: the Mg3(PO4)2 coated Li1.05Ni1/3Mn1/3Co1/3O2 cathode did not exhibit thermal runaway with smoke and explosion, in contrast to the cells containing the bare Li1.05Ni1/3Mn1/3Co1/3O2.展开更多
采用改进的碳酸盐共沉淀与高温固相法相结合的方法制备出了高倍率性能的锂离子电池正极材料Li[Ni1/3Co1/3Mn1/3]O2,通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安扫描(CV)、电化学阻抗谱(EIS)和电化学性能测试等手段对材料进行表征.结...采用改进的碳酸盐共沉淀与高温固相法相结合的方法制备出了高倍率性能的锂离子电池正极材料Li[Ni1/3Co1/3Mn1/3]O2,通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安扫描(CV)、电化学阻抗谱(EIS)和电化学性能测试等手段对材料进行表征.结果表明,该方法制备的材料具有良好的α-Na Fe O2型层状结构(R3m(166)),一次粒径平均大小为157 nm,二次颗粒成球形.同传统碳酸盐制备得到的材料相比,该材料具备良好的倍率性能和循环性能,在2.7-4.3 V电压范围内,0.1C(1.0C=180 m A?g-1)倍率下,首次放电比容量为156.4m Ah?g-1,库仑效率为81.9%.在较高倍率下,即0.5C、5.0C和20C时,其放电比容量分别为136.9、111.3、81.3m Ah?g-1.在1C倍率下100次循环容量保持率为92.9%,高于传统共沉淀法得到的材料(87.0%).展开更多
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(2009WK2007)supported by Key Project of Science and Technology Department of Hunan Province,ChinaProject(CX2009B133)supported by Colleges and Universities in Hunan Province Plans to Graduate Research and Innovation,China
文摘The layered Li[Ni1/3Mn1/3Co1/3]O2 was separately synthesized by pretreatment process of ball mill method and solution phase route, using [Ni1/3Co1/3Mn1/3]3O4 and lithium hydroxide as raw materials. The physical and electrochemical behaviors of Li[Ni1/3Mn1/3Co1/3]O2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and electrochemical charge/discharge cycling tests. The results show that the difference in pretreatment process results in the difference in compound Li[Ni1/3Co1/3Mn1/3]O2 structure, morphology and the electrochemical characteristics. The Li[Ni1/3Mn1/3Co1/3]O2 prepared by solution phase route maintains the uniform spherical morphology of the [Ni1/3Co1/3Mn1/3]3O4, and it exhibits a higher capacity retention and better rate capability than that prepared by ball mill method. The initial discharge capacity of this sample reaches 178 mA-h/g and the capacity retention after 50 cycles is 98.7% at a current density of 20 mA/g. Moreover, it delivers high discharge capacity of 135 mA-h/g at a current density of 1 000 mA/g.
基金financially supported by the National Natural Science Foundation of China (No. 51372136)the NSFC-Guangdong United Fund (No. U1401246)
文摘Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation method. The sample of x = 0.02 demonstrates a large discharge capacity of226 mAh g^(-1) over 100 cycles at 0.1 C and excellent rate performance with discharge capacity of 96 mAh g-1 at 5.0 C and room temperature. Particularly, this material shows much enhanced electrochemical performances even at high temperature of 55 ℃. It delivers a quite high discharge capacity of 233.7 mAh·g^(-1) at 1.0 C with capacity retention as high as 97.9% after 100 cycles. The results demonstrate that the fluorine incorporation stabilizes the cathode structure and maintains stable interfacial resistances.
文摘Layered cathode materials of high-temperature lithium batteries, Li Ni1/3Mn1/3Co1/3O2 are synthesized by a sol-gel method with variation in final sintering temperature for borehole applications. The structure, morphology and high-temperature discharge performance of these resulting products are investigated by X-Ray Diffraction(XRD), scanning electron microscopy(SEM), laser particle size analysis, galvanostatic and pulse discharge. The results of structural analysis indicate that the sample sintered at 800 ℃ has the characteristics of good crystallinity, narrow size distribution and large specific surface area at the same time. The discharge experiments also indicate that this sample has the best electrochemical properties, with the maximum discharge capacities of 314.57 and 434.14 m Ah·g-1 at 200 and 300 ℃ respectively and the minimum cell internal resistances at both temperatures.
文摘Spherical Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 was prepared via the homogenous precursors produced by solution spray-drying method. The precursors were sintered at different temperatures between 600 and 1 000 ℃ for 10 h. The impacts of different sintering temperatures on the structure and electrochemical performances of Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 were compared by means of X-ray diffractometry(XRD), scanning electron microscopy(SEM), and charge/discharge test as cathode materials for lithium ion batteries. The experimental results show that the spherical morphology of the spray-dried powers maintains during the subsequent heat treatment and the specific capacity increases with rising sintering temperature. When the sintering temperature rises up to 900 ℃ , Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 attains a reversible capacity of 153 mA·h/g between 3.00 and 4.35 V at 0.2C rate with excellent cyclability.
基金Funded by the National Natural Science Foundation of China (No. 20273047)
文摘Mg3(PO4)2-coated Li1.05Ni1/3Mn1/33Co1/3O2 cathode materials were synthesized via co-precipitation method. The morphology, structure, electrochemical performance and thermal stability were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), charge/discharge cycling and differential scanning calorimeter (DSC). SEM analysis shows that Mg3(PO4)2-coating changes the morphologies of their particles and increases the grains size. XRD and CV results show that Mg3(PO4)2-coating powder is homogeneous and has better layered structure than the bare one. Mg3(PO4)2-coating improved high rate discharge capacity and cycle-life performance. The reason why the cycling performance of Mg3(PO4)2-coated sample at 55 ℃ was better than that of room temperature was the increasing of lithium-ion diffusion rate and charge transfer rate with temperature rising. Mg3(PO4)2-coating improved the cathode thermal stability, and the result was consistent with thermal abuse tests using Li-ion cells: the Mg3(PO4)2 coated Li1.05Ni1/3Mn1/3Co1/3O2 cathode did not exhibit thermal runaway with smoke and explosion, in contrast to the cells containing the bare Li1.05Ni1/3Mn1/3Co1/3O2.
文摘采用改进的碳酸盐共沉淀与高温固相法相结合的方法制备出了高倍率性能的锂离子电池正极材料Li[Ni1/3Co1/3Mn1/3]O2,通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安扫描(CV)、电化学阻抗谱(EIS)和电化学性能测试等手段对材料进行表征.结果表明,该方法制备的材料具有良好的α-Na Fe O2型层状结构(R3m(166)),一次粒径平均大小为157 nm,二次颗粒成球形.同传统碳酸盐制备得到的材料相比,该材料具备良好的倍率性能和循环性能,在2.7-4.3 V电压范围内,0.1C(1.0C=180 m A?g-1)倍率下,首次放电比容量为156.4m Ah?g-1,库仑效率为81.9%.在较高倍率下,即0.5C、5.0C和20C时,其放电比容量分别为136.9、111.3、81.3m Ah?g-1.在1C倍率下100次循环容量保持率为92.9%,高于传统共沉淀法得到的材料(87.0%).