期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于NWP-LSTM的短期供热负荷预测方法 被引量:2
1
作者 刘文强 王占刚 《软件》 2023年第4期155-157,共3页
为提高短期供热负荷预测精度,提出了一种基于数值天气预报(NWP)和长短期记忆神经网络(LSTM)的短期供热负荷预测方法。该方法首先对NWP数据和历史供热负荷数据进行Pearson相关性分析,得出对供热负荷影响较大的天气因素,与历史供热负荷数... 为提高短期供热负荷预测精度,提出了一种基于数值天气预报(NWP)和长短期记忆神经网络(LSTM)的短期供热负荷预测方法。该方法首先对NWP数据和历史供热负荷数据进行Pearson相关性分析,得出对供热负荷影响较大的天气因素,与历史供热负荷数据一起组成神经网络的输入,并通过反复实验设计出最优结构的NWP-LSTM神经网络模型。通过与其他常见供热负荷预测方法比较,提出的NWP-LSTM模型可以获得更精确的预测结果,适合实际工程应用。 展开更多
关键词 短期供热负荷预测 数值天气预报 长短期记忆神经网络 nwp-lstm
在线阅读 下载PDF
基于双向长短期记忆深度学习模型的短期风功率预测方法研究 被引量:14
2
作者 谭敏戈 蒋勃 +4 位作者 王建渊 邓亚平 冯雅琳 蒋琪 贾灵贤 《电网与清洁能源》 2020年第6期85-91,共7页
风功率的准确预测对电力系统的规划、调度运行等方面均具有重要意义。该文以风功率预测误差最小为目标,提出了一种基于双向长短期记忆深度学习模型的短期风功率预测方法,包括3层(输入层、隐含层和输出层)网络结构的详细设计以及网络训... 风功率的准确预测对电力系统的规划、调度运行等方面均具有重要意义。该文以风功率预测误差最小为目标,提出了一种基于双向长短期记忆深度学习模型的短期风功率预测方法,包括3层(输入层、隐含层和输出层)网络结构的详细设计以及网络训练过程。输入层负责对原始数据进行预处理以满足网络输入要求,隐含层采用双向长短期记忆单元构建以提取输入数据的非线性特征,输出层提供预测结果,网络训练采用Adam优化方法。在此基础上,基于实际风电场采集数据为算例,对该文所提出模型进行训练与测试,验证了该文所提方法的可行性与优越性。 展开更多
关键词 风功率预测 数值天气预报 深度学习 双向长短期记忆神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部