目的针对遥感图像(remote sensing image,RSI)检测中目标尺寸小且密集、尺度变化大,尤其在复杂背景信息下容易出现漏检和误检问题,提出一种上下文信息和多尺度特征序列引导的遥感图像检测方法,以提升遥感图像的检测精度。方法首先,设计...目的针对遥感图像(remote sensing image,RSI)检测中目标尺寸小且密集、尺度变化大,尤其在复杂背景信息下容易出现漏检和误检问题,提出一种上下文信息和多尺度特征序列引导的遥感图像检测方法,以提升遥感图像的检测精度。方法首先,设计自适应大感受野机制(adaptive large receptive field,ALRF)用于特征提取。该机制通过级联不同扩张率的深度卷积进行分层特征提取,并利用通道和空间注意力对提取的特征进行通道加权和空间融合,使模型能够自适应地调整感受野大小,从而实现遥感图像上下文信息的有效利用。其次,为解决颈部网络特征融合过程中小目标语义信息丢失问题,设计多尺度特征序列融合架构(multi-scale feature fusion,MFF)。该架构通过构建多尺度特征序列,并结合浅层语义特征信息,实现复杂背景下多尺度全局信息的有效融合,从而减轻深层网络中特征模糊性对小目标局部细节捕捉的影响。最后,因传统交并比(intersection over union,IoU)对小目标位置偏差过于敏感,引入归一化Wasserstein距离(normalized Wasserstein distance,NWD)。NWD将边界框建模为二维高斯分布,计算这些分布间的Wasserstein距离来衡量边界框的相似性,从而降低小目标位置偏差敏感性。结果在NWPU VHR-10(Northwestern Polytechnical University very high resolution10)和DIOR(dataset for object detection in aerial images)数据集上与10种方法进行综合比较,结果表明,提出的方法优于对比方法,平均精度(average precision,AP)分别达到93.15%和80.89%,相较于基准模型YOLOv8n(you only look once version 8 nano),提升了5.48%和2.97%,同时参数量下降6.96%。结论提出一种上下文信息和多尺度特征序列引导的遥感图像检测方法,该方法提升目标的定位能力,改善复杂背景下遥感图像检测中的漏检和误检问题。展开更多
本文提出了一种改进YOLOv5的水面小目标检测算法.在网络结构上对浅层特征进行融合,新增一个检测头用于微小目标的检测.利用ConvMixer的结构特性,设计C3_CML模块用于取代原主干网络和颈部网络中特定位置的C3模块,通过增强图像特征信息空...本文提出了一种改进YOLOv5的水面小目标检测算法.在网络结构上对浅层特征进行融合,新增一个检测头用于微小目标的检测.利用ConvMixer的结构特性,设计C3_CML模块用于取代原主干网络和颈部网络中特定位置的C3模块,通过增强图像特征信息空间通道位置关系的提取能力,从而提升对有效目标区域的关注,同时降低模型复杂度.设计了新的损失函数,综合使用IOU(intersection over union)和NWD(normalized wasserstein distance)作为新的边界框损失评价指标,降低对小目标位置偏差的敏感性,显著提高小目标的检测性能.结果表明:相比原始YOLOv5算法,改进后的算法有效减少了水面密集小目标和极小目标的漏检率,同时检测精度得到了显著提高.展开更多
目的针对复杂的内河河道环境,漂浮垃圾中小目标物体占大多数且易受来自水面和岸边环境反光等因素影响,造成目标外形模糊,易被遮挡,给目标检测带来困难;提出了一种基于改进YOLOv7的河道漂浮垃圾检测算法。方法首先,针对河道漂浮垃圾的受...目的针对复杂的内河河道环境,漂浮垃圾中小目标物体占大多数且易受来自水面和岸边环境反光等因素影响,造成目标外形模糊,易被遮挡,给目标检测带来困难;提出了一种基于改进YOLOv7的河道漂浮垃圾检测算法。方法首先,针对河道漂浮垃圾的受环境影响外形发生变化,通过改进SPPCSPC模块,增强对小目标物体的特征提取能力;其次,加入中心化特征金字塔,通过ROI(region of interest)与特征金字塔进行加权融合,方便对于不同尺度目标的检测。最后,由于针对传统IoU(intersection over union)对于小目标物体位置偏差非常敏感,降低了检测性能。采用了Wasserstein Distance来替代IoU作为检测衡量指标,通过引入基于NWD(Normalized Wasserstein Distance)的损失函数,从而提高检测精度。结果实验结果表明:改进YOLOv7算法模型准确率增加3.1%达到89.7%,并在IoU为0.5以及IoU在0.5~0.95情况下,平均均值精度分别增加了6%、4.6%,分别达到87.8%、43.4%,检测结果优于其他经典检测模型。结论通过实验结果可以看出,改进后模型在检测精度上有显著提升,对于实际应用具有一定的参考价值。展开更多
针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and a...针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and adaptive scale fusion feature pyramid network,BiASF-FPN)结构,优化多尺度特征融合,保证算法有效捕捉从小尺度到大尺度目标的详细信息。提出OR-RepN4模块,通过重参数化策略,复杂算法结构简单化,提高推理速度。引用Shape-NWD(shape neighborhood weighted decomposition)损失函数,专注边界框形状与尺寸,采用归一化高斯Wasserstein距离平滑回归,实现跨尺度不变性,降低小尺度与遮挡目标的检测误差。实验结果表明,在优化后的SODA10M和BDD100K数据集下,RO-YOLOv9算法的mAP@0.5(mean average precision)分别达到68.1%和56.8%,比YLOLOv9算法提高5.6个百分点和4.4个百分点,并且检测帧率分别达到了55.3帧/s和54.2帧/s,达到检测精度和检测速度的平衡。展开更多
为满足多数工业场景下钢板表面缺陷检测的需求,针对钢板表面缺陷检测准确率低及小目标缺陷检测率低等问题,文中提出了一种基于改进YOLOv5(You Only Look Once version 5)的钢板表面缺陷检测算法。在YOLOv5的基础上将CBAM(Convolution Bl...为满足多数工业场景下钢板表面缺陷检测的需求,针对钢板表面缺陷检测准确率低及小目标缺陷检测率低等问题,文中提出了一种基于改进YOLOv5(You Only Look Once version 5)的钢板表面缺陷检测算法。在YOLOv5的基础上将CBAM(Convolution Block Attention Module)注意力模块嵌入到主干网络中,提高网络检测精度。加入上下文增强模块,提高了算法对小目标的检测性能。使用NWD(Normalized Wasserstein Distance)度量标准代替原YOLOv5中的IoU(Intersection over Union)度量,提高了网络对裂纹缺陷的识别精确度。实验结果表明,钢板表面缺陷检测算法对裂纹、夹杂、斑块、麻点、压入氧化铁皮、划痕6类缺陷的平均检测精度达到了88.9%,每秒帧数达到110.4 frame·s-1,其中小目标裂纹准确率达到75%。展开更多
文摘目的针对遥感图像(remote sensing image,RSI)检测中目标尺寸小且密集、尺度变化大,尤其在复杂背景信息下容易出现漏检和误检问题,提出一种上下文信息和多尺度特征序列引导的遥感图像检测方法,以提升遥感图像的检测精度。方法首先,设计自适应大感受野机制(adaptive large receptive field,ALRF)用于特征提取。该机制通过级联不同扩张率的深度卷积进行分层特征提取,并利用通道和空间注意力对提取的特征进行通道加权和空间融合,使模型能够自适应地调整感受野大小,从而实现遥感图像上下文信息的有效利用。其次,为解决颈部网络特征融合过程中小目标语义信息丢失问题,设计多尺度特征序列融合架构(multi-scale feature fusion,MFF)。该架构通过构建多尺度特征序列,并结合浅层语义特征信息,实现复杂背景下多尺度全局信息的有效融合,从而减轻深层网络中特征模糊性对小目标局部细节捕捉的影响。最后,因传统交并比(intersection over union,IoU)对小目标位置偏差过于敏感,引入归一化Wasserstein距离(normalized Wasserstein distance,NWD)。NWD将边界框建模为二维高斯分布,计算这些分布间的Wasserstein距离来衡量边界框的相似性,从而降低小目标位置偏差敏感性。结果在NWPU VHR-10(Northwestern Polytechnical University very high resolution10)和DIOR(dataset for object detection in aerial images)数据集上与10种方法进行综合比较,结果表明,提出的方法优于对比方法,平均精度(average precision,AP)分别达到93.15%和80.89%,相较于基准模型YOLOv8n(you only look once version 8 nano),提升了5.48%和2.97%,同时参数量下降6.96%。结论提出一种上下文信息和多尺度特征序列引导的遥感图像检测方法,该方法提升目标的定位能力,改善复杂背景下遥感图像检测中的漏检和误检问题。
文摘本文提出了一种改进YOLOv5的水面小目标检测算法.在网络结构上对浅层特征进行融合,新增一个检测头用于微小目标的检测.利用ConvMixer的结构特性,设计C3_CML模块用于取代原主干网络和颈部网络中特定位置的C3模块,通过增强图像特征信息空间通道位置关系的提取能力,从而提升对有效目标区域的关注,同时降低模型复杂度.设计了新的损失函数,综合使用IOU(intersection over union)和NWD(normalized wasserstein distance)作为新的边界框损失评价指标,降低对小目标位置偏差的敏感性,显著提高小目标的检测性能.结果表明:相比原始YOLOv5算法,改进后的算法有效减少了水面密集小目标和极小目标的漏检率,同时检测精度得到了显著提高.
文摘目的针对复杂的内河河道环境,漂浮垃圾中小目标物体占大多数且易受来自水面和岸边环境反光等因素影响,造成目标外形模糊,易被遮挡,给目标检测带来困难;提出了一种基于改进YOLOv7的河道漂浮垃圾检测算法。方法首先,针对河道漂浮垃圾的受环境影响外形发生变化,通过改进SPPCSPC模块,增强对小目标物体的特征提取能力;其次,加入中心化特征金字塔,通过ROI(region of interest)与特征金字塔进行加权融合,方便对于不同尺度目标的检测。最后,由于针对传统IoU(intersection over union)对于小目标物体位置偏差非常敏感,降低了检测性能。采用了Wasserstein Distance来替代IoU作为检测衡量指标,通过引入基于NWD(Normalized Wasserstein Distance)的损失函数,从而提高检测精度。结果实验结果表明:改进YOLOv7算法模型准确率增加3.1%达到89.7%,并在IoU为0.5以及IoU在0.5~0.95情况下,平均均值精度分别增加了6%、4.6%,分别达到87.8%、43.4%,检测结果优于其他经典检测模型。结论通过实验结果可以看出,改进后模型在检测精度上有显著提升,对于实际应用具有一定的参考价值。
文摘为满足多数工业场景下钢板表面缺陷检测的需求,针对钢板表面缺陷检测准确率低及小目标缺陷检测率低等问题,文中提出了一种基于改进YOLOv5(You Only Look Once version 5)的钢板表面缺陷检测算法。在YOLOv5的基础上将CBAM(Convolution Block Attention Module)注意力模块嵌入到主干网络中,提高网络检测精度。加入上下文增强模块,提高了算法对小目标的检测性能。使用NWD(Normalized Wasserstein Distance)度量标准代替原YOLOv5中的IoU(Intersection over Union)度量,提高了网络对裂纹缺陷的识别精确度。实验结果表明,钢板表面缺陷检测算法对裂纹、夹杂、斑块、麻点、压入氧化铁皮、划痕6类缺陷的平均检测精度达到了88.9%,每秒帧数达到110.4 frame·s-1,其中小目标裂纹准确率达到75%。