期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Forecast Skills and Predictability Sources of Marine Heatwaves in the NUIST-CFS1.0 Hindcasts
1
作者 Jing MA Haiming XU +1 位作者 Changming DONG Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1589-1600,共12页
Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast s... Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast skill of marine heatwaves(MHWs) over the globe and the predictability sources of the MHWs over the tropical oceans. The MHW forecasts are demonstrated to be skillful on seasonal-annual time scales, particularly in tropical oceans. The forecast skill of the MHWs over the tropical Pacific Ocean(TPO) remains high at lead times of 1–24 months, indicating a forecast better than random chance for up to two years. The forecast skill is subject to the spring predictability barrier of El Nino-Southern Oscillation(ENSO). The forecast skills for the MHWs over the tropical Indian Ocean(TIO), tropical Atlantic Ocean(TAO), and tropical Northwest Pacific(NWP) are lower than that in the TPO. A reliable forecast at lead times of up to two years is shown over the TIO, while a shorter reliable forecast window(less than 17 months) occurs for the TAO and NWP.Additionally, the forecast skills for the TIO, TAO, and NWP are seasonally dependent. Higher skills for the TIO and TAO appear in boreal spring, while a greater skill for the NWP emerges in late summer-early autumn. Further analyses suggest that ENSO serves as a critical source of predictability for MHWs over the TIO and TAO in spring and MHWs over the NWP in summer. 展开更多
关键词 marine heatwaves nuist-cfs1.0 hindcasts forecast skill predictability source ENSO
在线阅读 下载PDF
Improving the Seasonal Forecast of Summer Precipitation in Southeastern China Using a CycleGAN-based Deep Learning Bias Correction Method 被引量:1
2
作者 Song YANG Fenghua LING +1 位作者 Jing-Jia LUO Lei BAI 《Advances in Atmospheric Sciences》 2025年第1期26-35,共10页
Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the int... Accurate seasonal precipitation forecasts,especially for extreme events,are crucial to preventing meteorological hazards and their potential impacts on national development,social activity,and security.However,the intensity of summer precipitation is often largely underestimated in many current dynamic models.This study uses a deep learning method called Cycle-Consistent Generative Adversarial Networks(CycleGAN)to improve the seasonal forecasts for June-JulyAugust precipitation in southeastern China by the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS 1.0).The results suggest that the CycleGAN-based model significantly improves the accuracy in predicting the spatiotemporal distribution of summer precipitation compared to the traditional quantile mapping(QM)method.Using the unpaired bias-correction model,we can also obtain advanced forecasts of the frequency,intensity,and duration of extreme precipitation events over the dynamic model predictions.This study expands the potential applications of deep learning models toward improving seasonal precipitation forecasts. 展开更多
关键词 bias correction CycleGAN QM nuist-cfs 1.0 extreme precipitation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部