The unique structure and exceptional properties of two-dimensional(2D)materials offer significant potential for transformative advancements in semiconductor industry.Similar to the reliance on wafer-scale single-cryst...The unique structure and exceptional properties of two-dimensional(2D)materials offer significant potential for transformative advancements in semiconductor industry.Similar to the reliance on wafer-scale single-crystal ingots for silicon-based chips,practical applications of 2D materials at the chip level need large-scale,high-quality production of 2D single crystals.Over the past two decades,the size of 2D single-crystals has been improved to wafer or meter scale,where the nucleation control during the growth process is particularly important.Therefore,it is essential to conduct a comprehensive review of nucleation control to gain fundamental insights into the growth of 2D single-crystal materials.This review mainly focuses on two aspects:controlling nucleation density to enable the growth from a single nucleus,and controlling nucleation position to achieve the unidirectionally aligned islands and subsequent seamless stitching.Finally,we provide an overview and forecast of the strategic pathways for emerging 2D materials.展开更多
It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the h...It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the heterogeneous nucleation of twinned Al grains on twin-structured TiC nucleants and the preferred growth of twinned dendrites by laser surface remelting of bulk metals. The solidification structure at the surface shows a mixture of lamellar twinned dendrites with ultra-fine twin boundary spacing (∼2 µm), isolated twinned dendrites, and regular dendrites. EBSD analysis and finite element method (FEM) simulations have been used to understand the competitive growth between twinned and regular dendrites, and the solidification conditions for the preferred growth of twinned dendrites during laser remelting and subsequent rapid solidification are established. It is shown that the reduction in the ratio of temperature gradient G to solidification rate V promotes the formation of lamellar twinned dendrites. The primary trunk spacing of lamellar twinned dendrites is refined by the high thermal gradient and solidification rate. The present work paves a new way to generate high-density growth twins in additive-manufactured Al alloys.展开更多
Earthquakes are caused by the rapid slip along seismogenic faults.Whether large or small,there is inevitably a certain nucleation process involved before the dynamic rupture.At the same time,significant foreshock acti...Earthquakes are caused by the rapid slip along seismogenic faults.Whether large or small,there is inevitably a certain nucleation process involved before the dynamic rupture.At the same time,significant foreshock activity has been observed before some but not all large earthquakes.Understanding the nucleation process and foreshocks of earthquakes,especially large damaging ones,is crucial for accurate earthquake prediction and seismic hazard mitigation.The physical mechanism of earthquake nucleation and foreshock generation is still in debate.While the earthquake nucleation process is present in laboratory experiments and numerical simulations,it is difficult to observe such a process directly in the field.In addition,it is currently impossible to effectively distinguish foreshocks from ordinary earthquake sequences.In this article,we first summarize foreshock observations in the last decades and attempt to classify them into different types based on their temporal behaviors.Next,we present different mechanisms for earthquake nucleation and foreshocks that have been proposed so far.These physical models can be largely grouped into the following three categories:elastic stress triggering,aseismic slip,and fluid flows.We also review several recent studies of foreshock sequences before moderate to large earthquakes around the world,focusing on how different results/conclusions can be made by different datasets/methods.Finally,we offer some suggestions on how to move forward on the research topic of earthquake nucleation and foreshock mechanisms and their governing factors.展开更多
The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error do...The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error does not affect the conclusions of the study,and we apologize for any confusion it may have caused.展开更多
Lithium metal is a compelling choice as an anode material for high-energy-density batteries,attributed to its elevated theoretical specific energy and low redox potential.Nevertheless,challenges arise due to its susce...Lithium metal is a compelling choice as an anode material for high-energy-density batteries,attributed to its elevated theoretical specific energy and low redox potential.Nevertheless,challenges arise due to its susceptibility to high-volume changes and the tendency for dendritic development during cycling,leading to restricted cycle life and diminished Coulombic efficiency(CE).Here,we innovatively engineered a kind of porous biocarbon to serve as the framework for a lithium metal anode,which boasts a heightened specific surface area and uniformly dispersed ZnO active sites,directly derived from metasequoia cambium.The porous structure efficiently mitigates local current density and alleviates the volume expansion of lithium.Also,incorporating the ZnO lithiophilic site notably reduces the nucleation overpotential to a mere 16 mV,facilitating the deposition of lithium in a compact form.As a result,this innovative material ensures an impressive CE of 98.5%for lithium plating/stripping over 500 cycles,a remarkable cycle life exceeding 1200 h in a Li symmetrical cell,and more than 82%capacity retention ratio after an astonishing 690 cycles in full cells.In all,such a rationally designed Li composite anode effectively mitigates volume change,enhances lithophilicity,and reduces local current density,thereby inhibiting dendrite formation.The preparation of a highperformance lithium anode frame proves the feasibility of using biocarbon in a lithium anode frame.展开更多
Stability hinders further development of all-inorganic CsPb X_(3)(X=Cl,Br,I)quantum dots(QDs)although they exhibit promising prospects in optoelectronic applications.Coating perovskite quantum dots(PQDs)with a glass n...Stability hinders further development of all-inorganic CsPb X_(3)(X=Cl,Br,I)quantum dots(QDs)although they exhibit promising prospects in optoelectronic applications.Coating perovskite quantum dots(PQDs)with a glass network to form QD glass can significantly improve their stability.However,the dense glass network degrades their luminescent performance.In this work,the crystallization behavior of PQDs in glass and better luminescence properties are prompted by introducing titanium dioxide into borosilicate glass.The luminescence intensity of TiO_(2)-doped CsPbBr_(3)QD glass is increased by 1.6 times and the PLQY is increased from 49.8%to 79%compared to the undoped glass.Evidence proves that the improved prop-erties are attributed to the enhanced nucleation effect of titanium dioxide during the annealing process.Benefiting from the densification of the glass network caused by titanium dioxide doping,the stability of the PQD glass is further improved.LED devices with an ultra-wide color gamut that fully covers the NTSC1953 standard and achieves 128.6%of the NTSC1953 standard as well as 91.1%of the Rec.2020 stan-dard were fabricated by coupling PQD glass powder,demonstrating promising commercial applications of PQD glass in optoelectronic displays.展开更多
Silicon(Si)is an inevitable impurity element in the AZ31 alloy.In this study,the Si impurity was detected mainly as fine Mg_(2)Si particles dispersed widely within the central region of the Mg_(17)Al_(12) phase.During...Silicon(Si)is an inevitable impurity element in the AZ31 alloy.In this study,the Si impurity was detected mainly as fine Mg_(2)Si particles dispersed widely within the central region of the Mg_(17)Al_(12) phase.During the solidification process,the Mg_(2)Si particle precipitates at about 565℃,before the Mg_(17)Al_(12) phase of 186℃,potentially acting as the heterogeneous nucleation core for the Mg_(17)Al_(12) phase.The orientation relationship between Mg_(2)Si and Mg_(17)Al_(12) was investigated using the Edge-to-Edge matching model(E2EM)calculations,which showed a misfit of only 0.1%.This low misfit suggests that Mg_(2)Si can serve as a heterogeneous nucleation site for Mg_(17)Al_(12).The surface and interface structures of Mg_(2)Si(220)and Mg_(17)Al_(12)(332)were constructed,and then investigated through the first-principles calculation.The theoretical results indicate that Mg and Al are easily adsorbed on the surface of Mg_(2)Si,with Al showing higher adsorption energy than Mg.Furthermore,the interface between Mg_(2)Si and Mg_(17)Al_(12) exhibits favorable thermodynamic stability.Combined with experiments and theoretical calculations,it is confirmed that the Mg_(2)Si particles,formed due to the Si impurity,provide effective heterogeneous nucleation sites for the Mg_(17)Al_(12) phase.展开更多
Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks obs...Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks observed in voltammograms have demonstrated the capability of ethylene glycol solutions to electrodeposit Sn.The temperature-dependence of diffusion coefficient values derived from potentiodynamic and potentiostatic studies helped to determine and validate estimations of the activation energy for Sn(II)bulk diffusion.Chronoamperometric results have identified that,the suitable model to describe the early stage of Sn electrodeposition could be composed of Sn three-dimensional nucleation and diffusion-controlled growth and water reduction contributions,which was duly validated by theoretical and experimental approaches.From the model,typical kinetic parameters such as the nucleation frequency of Sn(A),number density of Sn nuclei(N_(0)),and diffusion coefficient of Sn(II)ions(D),were determined.The presence of Sn nuclei with excellent quality and their structures were verified using SEM,EDX,and XRD techniques.展开更多
It is challenging to assess the mechanism responsible for the nucleation of inclusions in metals at high temperatures.The present work therefore systematically investigates the nucleation of cerium oxide inclusions ac...It is challenging to assess the mechanism responsible for the nucleation of inclusions in metals at high temperatures.The present work therefore systematically investigates the nucleation of cerium oxide inclusions according to classical nucleation theory and a two-step nucleation mechanism.The nucleation rates and nucleation radii of these inclusions are obtained,and the results demonstrate a considerable difference between theoretical and experimental values.On the basis of a two-step nucleation mechanism,(CeO_(2))_(n) and(Ce_(2)O_(3))_(n)(n=1-6)clusters were constructed and the thermodynamic properties of both these clusters and of cerium oxide nanoparticles were analyzed.In addition,the entropies and heat capacity changes of cerium oxides were determined using first principles calculations and are found to be consistent with literature data.The present data indicate that the cerium oxide inclusion nucleation pathway can be summarized as[Ce]+[O]→(CeO_(2))n/(Ce_(2)O_(3))_(n)→(Ce_(2)O_(3))_(n)→(Ce_(2)O_(3))_(2)→core(Ce_(2)O_(3)crystal)-shell((Ce_(2)O_(3))_(2) cluster)nanoparticles→(Ce_(2)O_(3))bulk.展开更多
Previous Particle Boundary(PPB),as the detrimental structure in Powder Metallurgy(PM)components,should be eliminated by subsequent hot process to improve the mechanical properties.The objective is to investigate the D...Previous Particle Boundary(PPB),as the detrimental structure in Powder Metallurgy(PM)components,should be eliminated by subsequent hot process to improve the mechanical properties.The objective is to investigate the Dynamic Recrystallization(DRX)nucleation mechanisms and grain growth behavior of the 3rd-generation PM superalloy with PPB structure.Microstructure observation reveals that PPB decorated with(Ti,Ta,Nb)C carbides belongs to the discontinuous chain-like structure.The elimination of PPB networks can be achieved effectively via hot deformation due to the occurrence of DRX.Four different DRX nucleation mechanisms were proposed and discussed in detail according to the special microstructure characteristics of the PM superalloy.Firstly,local lattice rotations can be detected in the vicinity of(Ti,Ta,Nb)C carbides during hot deformation and thus PPB structure serves as the preferential nucleation sites for DRX grains via Particle-Stimulated Nucleation(PSN).Then,Discontinuous-DRX(DDRX)characterized by grain boundary bulging dominates the microstructure refinement and Continuous-DRX(CDRX)operated by subgrain rotation can be regarded as an important assistant mechanism.At last,the initial Σ3 boundaries would lose their twin characteristics owing to the crystal rotation and then transform into the general High Angle Grain Boundaries(HAGBs).The distorted twins provide additional DRX nucleation sites,viz.,twin-assisted nucleation.Particular attention was focused on the grain growth behavior of the PM superalloy in subsequent annealing process.The recrystallization temperature was determined to be about 1110.C and 1140.C can be considered as the critical temperature for grain growth.The findings would provide theoretical support for microstructure refinement of the 3rd-generation PM superalloy,which is of pivotal significance for improving the mechanical properties of aviation components.展开更多
2LiBH_(4)-MgH_(2)composite is one of the most attractive reactive hydride composites with a theoretic hydrogen capacity of 10.8 wt%.However,the large nucleation restriction of MgB_(2)during the second step of dehydrog...2LiBH_(4)-MgH_(2)composite is one of the most attractive reactive hydride composites with a theoretic hydrogen capacity of 10.8 wt%.However,the large nucleation restriction of MgB_(2)during the second step of dehydrogenation results in sluggish hydrogen storage kinetics and high operating temperature,which hinders its practical application as on-board hydrogen storage materials.Herein,Al3Ti doped Al nanoparticles(AT NPs)are prepared by a facile chemical reduction reaction to improve the hydrogen storage performance of 2LiBH_(4)-MgH_(2)composite.During the initial H_(2)desorption process,MgAlB_(4)and TiB_(2)that have identical crystal structure and low d-value mismatch with MgB_(2)resulting from the reaction between AT NPs and 2LiBH_(4)-MgH_(2)composite serve as effective nucleation sites for the formation of MgB_(2).As a result,the apparent activation energy of the two-step H_(2)desorption of AT NPs doped 2LiBH_(4)-MgH_(2)composite are notably decreased to(110.0±5.9)and(119.6±1.4)kJ·mol^(-1),which is 55.5 and 33.5 kJ·mol^(-1)lower than that of the undoped sample.More importantly,a reversible hydrogen storage capacity of 9.2 wt%after 10cycles of H_(2)desorption and adsorption could be achieved,corresponding to a capacity retention rate of 99%.The building of reactive bimetallic catalyst towards in situ formation of heterogeneous nucleation sites provides a new strategy for improving the hydrogen storage performance of reactive hydride composites.展开更多
The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by im...The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by immersion in an aqueous environment to transform it into C-S-H.This two-step nucleation approach results in C-S-H with a specific surface area of 497.2 m^(2)/g,achieved by preventing C-S-H foil overlapping and refining its pore structure.When impregnated with paraffin,the novel C-S-H/paraffin composite exhibits superior thermal properties,such as a higher potential heat value of 148.3 J/g and an encapsulation efficiency of 81.6%,outperforming conventional C-S-H.Moreover,the composite material demonstrates excellent cyclic performance,indicating its potential for building thermal storage compared to other paraffin-based composites.Compared with the conventional method,this simple technology,which only adds conversion and centrifugation steps,does not negatively impact preparation costs,the environment,and resource consumption.This study provides valuable theoretical insights for designing thermal storage concrete materials and advancing building heat management.展开更多
The nucleation and transition sequences of topologically close-packed(TCP)phases in a Re-containing Ni-based single crystal superalloy were systematically investigated using in-situ transmission electron microscopy(TE...The nucleation and transition sequences of topologically close-packed(TCP)phases in a Re-containing Ni-based single crystal superalloy were systematically investigated using in-situ transmission electron microscopy(TEM)and three-dimensional atom probe technology(3D-APT).During the initial stage of heat-exposure at 1100℃,the TCP phase forming elements(Re,Co,Cr,etc.)segregated at theγ/γin-terface near theγmatrix side to provide the concentration undulations for the nucleation sites of TCP phases,following which theσand P phase coherently nucleated along the(111)γand(022)γplanes from theγ/γinterface near theγmatrix side,respectively.With prolonged heat-exposure time,transitions fromσphase to P phase,σphase toμphase,and P phase toμphase occurred.Besides,the orientation relationships of TCP phase intergrowth structures indicated that the P phase grew along the(¯101)σplane of theσphase by co-lattice precipitation,meanwhile,theμphase grew with smaller lattice misfits along the(0¯40)σplane of theσphase and the(400)P plane of the P phase.Additionally,the result by first-principles calculation evidenced that theμphase had the lowest system energy to make the transition ofσphase and P phase toμphases inevitable,therefore,the TCP phase ultimately existed as the most stableμphase.Finally,the transition sequences of TCP phase during heat-exposure could be summarized into three types:γmatrix→σ→μ,γmatrix→P→μ,andγmatrix→σ→P→μ.展开更多
Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the ...Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency.展开更多
The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving incr...The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity;however,uncontrollable and nonuniform deposition of Li remains a challenge.In this study,we synthesize metal–organic framework‐derived carbon microcapsules with heteroatom clusters(Zn and Ag)on the capsule walls and it is demonstrated that Ag‐assisted nucleation of Li metal alters the outward‐to‐inward growth in the microcapsule host.Zn‐incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework‐8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag^(+) and metallic Zn.Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating.Through combined electrochemical,microstructural,and computational studies,we verify the beneficial role of Ag‐assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and,in turn,enhancing electrochemical performance.This study provides new insights into the design of reversible host materials for practical Li metal batteries.展开更多
Zirconium(Zr)emerges as the most effective grain refiner for magnesium(Mg)alloys incorporating Zr.Typically,Zr is introduced in the form of an Mg–Zr master alloy.However,within Mg–Zr master alloys,Zr predominantly e...Zirconium(Zr)emerges as the most effective grain refiner for magnesium(Mg)alloys incorporating Zr.Typically,Zr is introduced in the form of an Mg–Zr master alloy.However,within Mg–Zr master alloys,Zr predominantly exists in a particle form,which tends to aggregate due to attractive van der Waals forces.The clustered Zr is prone to settling,thereby reducing its refining impact on Mg alloys.In this work,a combined pretreatment process for Mg–Zr master alloys was proposed,encompassing the introduction of a physical field to intervene the agglomeration of particle Zr and the employ of high-temperature dissolution and peritectic reactions to promote the solid solution of Zr.The results demonstrate that the particle Zr within the pretreated Mg–Zr master alloy is effectively dispersed and refined,and greater solute Zr levels can be achieved.The subsequent grain refinement ability was studied on a typical Mg–6Zn–0.6Zr(wt%)alloy.The outcome highlights that an improvement in the grain refinement efficacy(32.4%)of Mg–Zr master alloys was obtained with a holding time of 60 min.The pretreated Mg–Zr master alloy significantly augments the efficiency of grain refinement for Mg alloys through a synergistic strategy involving heterogeneous nucleation and solute-driven growth restriction.The crucial factor in achieving effective grain refinement of Zr in Mg alloys lies in regulating the presence and morphology of Zr in the Mg–Zr master alloy,distinguishing between particle Zr and solute Zr.This study introduces a novel method for developing more efficient Mg–Zr refiners.展开更多
Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trol...Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trolytes,delaying Li_(2)S supersaturation and its nucleation.In this study,we draw inspiration from the ribosome-driven protein synthesis process in cells to prepare ultrasmall nitrogen-doped MoS_(2) nanocrys-tals anchored on porous nitrogen-doped carbon networks(N-MoS_(2)-NC)electrocatalysts.Excitedly,the ex-situ SEM demonstrates that ribosome-inspired N-MoS_(2)-NC electrocatalysts induce early nucleation and rapid growth of three-dimensional Li_(2)s during discharge.Theoretical calculations reveal that the Li-s bond length in N-MoS_(2)-Li_(2)S(100)is shorter,and the corresponding interfacial formation energy is lower than in MoS_(2)-Li_(2)S(100).This accelerated conversion of lithium polysulfides to Li_(2)S can enhance the utilization of active substances and inhibit the shuttle effect.This study highlights the potential of ribosome-inspired N-MoS_(2)-NC in improving the electrochemical stability of Li-S batteries,providing valuable insights for future electrocatalyst design.展开更多
Flocking and vortical are two typical motion modes in active matter.Although it is known that the two modes can spontaneously switch between each other in a finite-size system,the switching dynamics remain elusive.In ...Flocking and vortical are two typical motion modes in active matter.Although it is known that the two modes can spontaneously switch between each other in a finite-size system,the switching dynamics remain elusive.In this work,by computer simulation of a two-dimensional Vicsek-like system with 1000 particles,we find from the perspective of the classical nucleation theory that the forward and backward switching dynamics are asymmetric:going from flocking to vortical is a one-step nucleation process,while the opposite is a two-step nucleation process,with the system staying in a metastable state before reaching the final flocking state.展开更多
Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microsco...Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microscopy. DSC results were used to calculate the activation energy and nucleation work of primaryα(Al) phase. The results show that the values of activation energy and nucleation work are decreased and the nucleation frequency is increased with the additions of Ce and Sr to the alloys. Moreover, the grain size of dendriticα(Al) phase is well refined, and the nucleation temperatures of primaryα(Al) dendrites are decreased with the additions of Ce and Sr. The effects of elements Ce and Sr additions on kinetic nucleation of primary α(Al) phases were also discussed in hypoeutectic Al-7%Si-Mg cast alloy.展开更多
It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nu...It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. .展开更多
基金supported by the National Natural Science Foundation of China(12322406,12404208)the National Key R&D Program of China(2022YFA1403503)+2 种基金China Postdoctoral Science Foundation(2024M750970)the Science and Technology Program of Guangzhou(SL2024A04J00033)the Scientific Research lnnovation Project of Graduate School of South China Normal University.
文摘The unique structure and exceptional properties of two-dimensional(2D)materials offer significant potential for transformative advancements in semiconductor industry.Similar to the reliance on wafer-scale single-crystal ingots for silicon-based chips,practical applications of 2D materials at the chip level need large-scale,high-quality production of 2D single crystals.Over the past two decades,the size of 2D single-crystals has been improved to wafer or meter scale,where the nucleation control during the growth process is particularly important.Therefore,it is essential to conduct a comprehensive review of nucleation control to gain fundamental insights into the growth of 2D single-crystal materials.This review mainly focuses on two aspects:controlling nucleation density to enable the growth from a single nucleus,and controlling nucleation position to achieve the unidirectionally aligned islands and subsequent seamless stitching.Finally,we provide an overview and forecast of the strategic pathways for emerging 2D materials.
基金supported by the National Natural Science Foundation of China(grant no.52371029)the Science and Technology Development Program of Jilin Province,China(grant no.20210402083GH).
文摘It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the heterogeneous nucleation of twinned Al grains on twin-structured TiC nucleants and the preferred growth of twinned dendrites by laser surface remelting of bulk metals. The solidification structure at the surface shows a mixture of lamellar twinned dendrites with ultra-fine twin boundary spacing (∼2 µm), isolated twinned dendrites, and regular dendrites. EBSD analysis and finite element method (FEM) simulations have been used to understand the competitive growth between twinned and regular dendrites, and the solidification conditions for the preferred growth of twinned dendrites during laser remelting and subsequent rapid solidification are established. It is shown that the reduction in the ratio of temperature gradient G to solidification rate V promotes the formation of lamellar twinned dendrites. The primary trunk spacing of lamellar twinned dendrites is refined by the high thermal gradient and solidification rate. The present work paves a new way to generate high-density growth twins in additive-manufactured Al alloys.
基金supported by U.S.National Science Foundation grant RISE-2425889.
文摘Earthquakes are caused by the rapid slip along seismogenic faults.Whether large or small,there is inevitably a certain nucleation process involved before the dynamic rupture.At the same time,significant foreshock activity has been observed before some but not all large earthquakes.Understanding the nucleation process and foreshocks of earthquakes,especially large damaging ones,is crucial for accurate earthquake prediction and seismic hazard mitigation.The physical mechanism of earthquake nucleation and foreshock generation is still in debate.While the earthquake nucleation process is present in laboratory experiments and numerical simulations,it is difficult to observe such a process directly in the field.In addition,it is currently impossible to effectively distinguish foreshocks from ordinary earthquake sequences.In this article,we first summarize foreshock observations in the last decades and attempt to classify them into different types based on their temporal behaviors.Next,we present different mechanisms for earthquake nucleation and foreshocks that have been proposed so far.These physical models can be largely grouped into the following three categories:elastic stress triggering,aseismic slip,and fluid flows.We also review several recent studies of foreshock sequences before moderate to large earthquakes around the world,focusing on how different results/conclusions can be made by different datasets/methods.Finally,we offer some suggestions on how to move forward on the research topic of earthquake nucleation and foreshock mechanisms and their governing factors.
文摘The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error does not affect the conclusions of the study,and we apologize for any confusion it may have caused.
基金supported by the National Natural Science Foundation of China(22179005,92372207)Fundamental Research Funds for the Central Universities(2022CX01017).
文摘Lithium metal is a compelling choice as an anode material for high-energy-density batteries,attributed to its elevated theoretical specific energy and low redox potential.Nevertheless,challenges arise due to its susceptibility to high-volume changes and the tendency for dendritic development during cycling,leading to restricted cycle life and diminished Coulombic efficiency(CE).Here,we innovatively engineered a kind of porous biocarbon to serve as the framework for a lithium metal anode,which boasts a heightened specific surface area and uniformly dispersed ZnO active sites,directly derived from metasequoia cambium.The porous structure efficiently mitigates local current density and alleviates the volume expansion of lithium.Also,incorporating the ZnO lithiophilic site notably reduces the nucleation overpotential to a mere 16 mV,facilitating the deposition of lithium in a compact form.As a result,this innovative material ensures an impressive CE of 98.5%for lithium plating/stripping over 500 cycles,a remarkable cycle life exceeding 1200 h in a Li symmetrical cell,and more than 82%capacity retention ratio after an astonishing 690 cycles in full cells.In all,such a rationally designed Li composite anode effectively mitigates volume change,enhances lithophilicity,and reduces local current density,thereby inhibiting dendrite formation.The preparation of a highperformance lithium anode frame proves the feasibility of using biocarbon in a lithium anode frame.
基金sponsored by the Hengdian Group Holding Co.LTDsupported by the joint fund from Hengdian Group and Shanghai Institute of Ceram-ics,Chinese Academy of Sciences
文摘Stability hinders further development of all-inorganic CsPb X_(3)(X=Cl,Br,I)quantum dots(QDs)although they exhibit promising prospects in optoelectronic applications.Coating perovskite quantum dots(PQDs)with a glass network to form QD glass can significantly improve their stability.However,the dense glass network degrades their luminescent performance.In this work,the crystallization behavior of PQDs in glass and better luminescence properties are prompted by introducing titanium dioxide into borosilicate glass.The luminescence intensity of TiO_(2)-doped CsPbBr_(3)QD glass is increased by 1.6 times and the PLQY is increased from 49.8%to 79%compared to the undoped glass.Evidence proves that the improved prop-erties are attributed to the enhanced nucleation effect of titanium dioxide during the annealing process.Benefiting from the densification of the glass network caused by titanium dioxide doping,the stability of the PQD glass is further improved.LED devices with an ultra-wide color gamut that fully covers the NTSC1953 standard and achieves 128.6%of the NTSC1953 standard as well as 91.1%of the Rec.2020 stan-dard were fabricated by coupling PQD glass powder,demonstrating promising commercial applications of PQD glass in optoelectronic displays.
基金supported by the National Natural Science Foundation of China(Nos.51871100 and 12074126).
文摘Silicon(Si)is an inevitable impurity element in the AZ31 alloy.In this study,the Si impurity was detected mainly as fine Mg_(2)Si particles dispersed widely within the central region of the Mg_(17)Al_(12) phase.During the solidification process,the Mg_(2)Si particle precipitates at about 565℃,before the Mg_(17)Al_(12) phase of 186℃,potentially acting as the heterogeneous nucleation core for the Mg_(17)Al_(12) phase.The orientation relationship between Mg_(2)Si and Mg_(17)Al_(12) was investigated using the Edge-to-Edge matching model(E2EM)calculations,which showed a misfit of only 0.1%.This low misfit suggests that Mg_(2)Si can serve as a heterogeneous nucleation site for Mg_(17)Al_(12).The surface and interface structures of Mg_(2)Si(220)and Mg_(17)Al_(12)(332)were constructed,and then investigated through the first-principles calculation.The theoretical results indicate that Mg and Al are easily adsorbed on the surface of Mg_(2)Si,with Al showing higher adsorption energy than Mg.Furthermore,the interface between Mg_(2)Si and Mg_(17)Al_(12) exhibits favorable thermodynamic stability.Combined with experiments and theoretical calculations,it is confirmed that the Mg_(2)Si particles,formed due to the Si impurity,provide effective heterogeneous nucleation sites for the Mg_(17)Al_(12) phase.
文摘Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks observed in voltammograms have demonstrated the capability of ethylene glycol solutions to electrodeposit Sn.The temperature-dependence of diffusion coefficient values derived from potentiodynamic and potentiostatic studies helped to determine and validate estimations of the activation energy for Sn(II)bulk diffusion.Chronoamperometric results have identified that,the suitable model to describe the early stage of Sn electrodeposition could be composed of Sn three-dimensional nucleation and diffusion-controlled growth and water reduction contributions,which was duly validated by theoretical and experimental approaches.From the model,typical kinetic parameters such as the nucleation frequency of Sn(A),number density of Sn nuclei(N_(0)),and diffusion coefficient of Sn(II)ions(D),were determined.The presence of Sn nuclei with excellent quality and their structures were verified using SEM,EDX,and XRD techniques.
基金Project supported by the National Natural Science Foundation of China(52064011,52274331)Science and Technology Planning Project of Guizhou(Qian Ke He Ji Chu ZK[2021]258,Qian Ke He Chengguo[2022]089,Qian Ke He Chengguo[2021]086)。
文摘It is challenging to assess the mechanism responsible for the nucleation of inclusions in metals at high temperatures.The present work therefore systematically investigates the nucleation of cerium oxide inclusions according to classical nucleation theory and a two-step nucleation mechanism.The nucleation rates and nucleation radii of these inclusions are obtained,and the results demonstrate a considerable difference between theoretical and experimental values.On the basis of a two-step nucleation mechanism,(CeO_(2))_(n) and(Ce_(2)O_(3))_(n)(n=1-6)clusters were constructed and the thermodynamic properties of both these clusters and of cerium oxide nanoparticles were analyzed.In addition,the entropies and heat capacity changes of cerium oxides were determined using first principles calculations and are found to be consistent with literature data.The present data indicate that the cerium oxide inclusion nucleation pathway can be summarized as[Ce]+[O]→(CeO_(2))n/(Ce_(2)O_(3))_(n)→(Ce_(2)O_(3))_(n)→(Ce_(2)O_(3))_(2)→core(Ce_(2)O_(3)crystal)-shell((Ce_(2)O_(3))_(2) cluster)nanoparticles→(Ce_(2)O_(3))bulk.
基金supported by the National Natural Science Foundation of China(No.52175363)the National Key Research and Development Program,China(Nos.XXXXKF2019-8-1,XX-XX-0015-0087)。
文摘Previous Particle Boundary(PPB),as the detrimental structure in Powder Metallurgy(PM)components,should be eliminated by subsequent hot process to improve the mechanical properties.The objective is to investigate the Dynamic Recrystallization(DRX)nucleation mechanisms and grain growth behavior of the 3rd-generation PM superalloy with PPB structure.Microstructure observation reveals that PPB decorated with(Ti,Ta,Nb)C carbides belongs to the discontinuous chain-like structure.The elimination of PPB networks can be achieved effectively via hot deformation due to the occurrence of DRX.Four different DRX nucleation mechanisms were proposed and discussed in detail according to the special microstructure characteristics of the PM superalloy.Firstly,local lattice rotations can be detected in the vicinity of(Ti,Ta,Nb)C carbides during hot deformation and thus PPB structure serves as the preferential nucleation sites for DRX grains via Particle-Stimulated Nucleation(PSN).Then,Discontinuous-DRX(DDRX)characterized by grain boundary bulging dominates the microstructure refinement and Continuous-DRX(CDRX)operated by subgrain rotation can be regarded as an important assistant mechanism.At last,the initial Σ3 boundaries would lose their twin characteristics owing to the crystal rotation and then transform into the general High Angle Grain Boundaries(HAGBs).The distorted twins provide additional DRX nucleation sites,viz.,twin-assisted nucleation.Particular attention was focused on the grain growth behavior of the PM superalloy in subsequent annealing process.The recrystallization temperature was determined to be about 1110.C and 1140.C can be considered as the critical temperature for grain growth.The findings would provide theoretical support for microstructure refinement of the 3rd-generation PM superalloy,which is of pivotal significance for improving the mechanical properties of aviation components.
基金financially supported by the National Key R&D Program of China(No.2020YFA0406204)the National Natural Science Foundation of China(Nos.U2130208,22279020,22109026,51971065,51901045 and 52071156)+1 种基金the Science and Technology Commission of Shanghai Municipality(Nos.21ZR1407500 and 23ZR1406500)the Programs for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning。
文摘2LiBH_(4)-MgH_(2)composite is one of the most attractive reactive hydride composites with a theoretic hydrogen capacity of 10.8 wt%.However,the large nucleation restriction of MgB_(2)during the second step of dehydrogenation results in sluggish hydrogen storage kinetics and high operating temperature,which hinders its practical application as on-board hydrogen storage materials.Herein,Al3Ti doped Al nanoparticles(AT NPs)are prepared by a facile chemical reduction reaction to improve the hydrogen storage performance of 2LiBH_(4)-MgH_(2)composite.During the initial H_(2)desorption process,MgAlB_(4)and TiB_(2)that have identical crystal structure and low d-value mismatch with MgB_(2)resulting from the reaction between AT NPs and 2LiBH_(4)-MgH_(2)composite serve as effective nucleation sites for the formation of MgB_(2).As a result,the apparent activation energy of the two-step H_(2)desorption of AT NPs doped 2LiBH_(4)-MgH_(2)composite are notably decreased to(110.0±5.9)and(119.6±1.4)kJ·mol^(-1),which is 55.5 and 33.5 kJ·mol^(-1)lower than that of the undoped sample.More importantly,a reversible hydrogen storage capacity of 9.2 wt%after 10cycles of H_(2)desorption and adsorption could be achieved,corresponding to a capacity retention rate of 99%.The building of reactive bimetallic catalyst towards in situ formation of heterogeneous nucleation sites provides a new strategy for improving the hydrogen storage performance of reactive hydride composites.
基金The National Natural Science Foundation of China(No.52122802,52078126)Jiangsu Provincial Department of Science and Technology Innovation Support Program(No.BK20222004,BZ2022036).
文摘The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by immersion in an aqueous environment to transform it into C-S-H.This two-step nucleation approach results in C-S-H with a specific surface area of 497.2 m^(2)/g,achieved by preventing C-S-H foil overlapping and refining its pore structure.When impregnated with paraffin,the novel C-S-H/paraffin composite exhibits superior thermal properties,such as a higher potential heat value of 148.3 J/g and an encapsulation efficiency of 81.6%,outperforming conventional C-S-H.Moreover,the composite material demonstrates excellent cyclic performance,indicating its potential for building thermal storage compared to other paraffin-based composites.Compared with the conventional method,this simple technology,which only adds conversion and centrifugation steps,does not negatively impact preparation costs,the environment,and resource consumption.This study provides valuable theoretical insights for designing thermal storage concrete materials and advancing building heat management.
基金supported by the National Natural Science Foundation of China(Nos.51771148,52071263,52031012,and 52322410)the Science Center for Gas Turbine Project(No.P2021-A-IV-001-001)+3 种基金the Key Research and Development Program of Shaanxi Province(No.2023-YBGY-432)the Natural Science Ba-sic Research Plan in Shaanxi Province of China(No.2021JC-13)the Science and Technology Funding Key R&D Industry Foresight and Key Technologies of Jiangsu Province(No.BE2022124)the Re-search Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2021-QZ-03).
文摘The nucleation and transition sequences of topologically close-packed(TCP)phases in a Re-containing Ni-based single crystal superalloy were systematically investigated using in-situ transmission electron microscopy(TEM)and three-dimensional atom probe technology(3D-APT).During the initial stage of heat-exposure at 1100℃,the TCP phase forming elements(Re,Co,Cr,etc.)segregated at theγ/γin-terface near theγmatrix side to provide the concentration undulations for the nucleation sites of TCP phases,following which theσand P phase coherently nucleated along the(111)γand(022)γplanes from theγ/γinterface near theγmatrix side,respectively.With prolonged heat-exposure time,transitions fromσphase to P phase,σphase toμphase,and P phase toμphase occurred.Besides,the orientation relationships of TCP phase intergrowth structures indicated that the P phase grew along the(¯101)σplane of theσphase by co-lattice precipitation,meanwhile,theμphase grew with smaller lattice misfits along the(0¯40)σplane of theσphase and the(400)P plane of the P phase.Additionally,the result by first-principles calculation evidenced that theμphase had the lowest system energy to make the transition ofσphase and P phase toμphases inevitable,therefore,the TCP phase ultimately existed as the most stableμphase.Finally,the transition sequences of TCP phase during heat-exposure could be summarized into three types:γmatrix→σ→μ,γmatrix→P→μ,andγmatrix→σ→P→μ.
基金funding support from the National Natural Science Foundation of China (22125902, 22109150, 22279126, U2032202, and 21975243)the DNL cooperation Fund, CAS (DNL202020)+1 种基金the National Key R&D Program of China (no. 2022YFA1504101)the Anhui Provincial Natural Science Foundation (2108085QB65)
文摘Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency.
基金National Research Foundation,Grant/Award Numbers:NRF‐2018R1A5A1025594,NRF‐2022M3J1A1062644。
文摘The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity;however,uncontrollable and nonuniform deposition of Li remains a challenge.In this study,we synthesize metal–organic framework‐derived carbon microcapsules with heteroatom clusters(Zn and Ag)on the capsule walls and it is demonstrated that Ag‐assisted nucleation of Li metal alters the outward‐to‐inward growth in the microcapsule host.Zn‐incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework‐8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag^(+) and metallic Zn.Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating.Through combined electrochemical,microstructural,and computational studies,we verify the beneficial role of Ag‐assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and,in turn,enhancing electrochemical performance.This study provides new insights into the design of reversible host materials for practical Li metal batteries.
基金supported by the National Key Research and Development Program of China(No.2021YFB3501001)the National Natural Science Foundation of China(No.52061028)the Major Research and Development Projects of Jiangxi Province(No.20223BBE51021).
文摘Zirconium(Zr)emerges as the most effective grain refiner for magnesium(Mg)alloys incorporating Zr.Typically,Zr is introduced in the form of an Mg–Zr master alloy.However,within Mg–Zr master alloys,Zr predominantly exists in a particle form,which tends to aggregate due to attractive van der Waals forces.The clustered Zr is prone to settling,thereby reducing its refining impact on Mg alloys.In this work,a combined pretreatment process for Mg–Zr master alloys was proposed,encompassing the introduction of a physical field to intervene the agglomeration of particle Zr and the employ of high-temperature dissolution and peritectic reactions to promote the solid solution of Zr.The results demonstrate that the particle Zr within the pretreated Mg–Zr master alloy is effectively dispersed and refined,and greater solute Zr levels can be achieved.The subsequent grain refinement ability was studied on a typical Mg–6Zn–0.6Zr(wt%)alloy.The outcome highlights that an improvement in the grain refinement efficacy(32.4%)of Mg–Zr master alloys was obtained with a holding time of 60 min.The pretreated Mg–Zr master alloy significantly augments the efficiency of grain refinement for Mg alloys through a synergistic strategy involving heterogeneous nucleation and solute-driven growth restriction.The crucial factor in achieving effective grain refinement of Zr in Mg alloys lies in regulating the presence and morphology of Zr in the Mg–Zr master alloy,distinguishing between particle Zr and solute Zr.This study introduces a novel method for developing more efficient Mg–Zr refiners.
基金support from the National Natural Science Foundation of China(Grant Nos.52372083,52173255),the Collaborative Innovation Center for Advanced Micro/nanomaterials and Equipment(Co-constructed by Jiangsu Province and Ministry of Education)support from the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20230538).
文摘Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trolytes,delaying Li_(2)S supersaturation and its nucleation.In this study,we draw inspiration from the ribosome-driven protein synthesis process in cells to prepare ultrasmall nitrogen-doped MoS_(2) nanocrys-tals anchored on porous nitrogen-doped carbon networks(N-MoS_(2)-NC)electrocatalysts.Excitedly,the ex-situ SEM demonstrates that ribosome-inspired N-MoS_(2)-NC electrocatalysts induce early nucleation and rapid growth of three-dimensional Li_(2)s during discharge.Theoretical calculations reveal that the Li-s bond length in N-MoS_(2)-Li_(2)S(100)is shorter,and the corresponding interfacial formation energy is lower than in MoS_(2)-Li_(2)S(100).This accelerated conversion of lithium polysulfides to Li_(2)S can enhance the utilization of active substances and inhibit the shuttle effect.This study highlights the potential of ribosome-inspired N-MoS_(2)-NC in improving the electrochemical stability of Li-S batteries,providing valuable insights for future electrocatalyst design.
基金supported by the National Natural Science Foundation of China (No. 11947302)
文摘Flocking and vortical are two typical motion modes in active matter.Although it is known that the two modes can spontaneously switch between each other in a finite-size system,the switching dynamics remain elusive.In this work,by computer simulation of a two-dimensional Vicsek-like system with 1000 particles,we find from the perspective of the classical nucleation theory that the forward and backward switching dynamics are asymmetric:going from flocking to vortical is a one-step nucleation process,while the opposite is a two-step nucleation process,with the system staying in a metastable state before reaching the final flocking state.
基金Project (42-QP-009) support by Research Fund of the State Key Laboratory of Solidification Processing,ChinaProject (B08040) supported by the Program of Introducing Talents of Discipline to Universities ("111"Project),China
文摘Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microscopy. DSC results were used to calculate the activation energy and nucleation work of primaryα(Al) phase. The results show that the values of activation energy and nucleation work are decreased and the nucleation frequency is increased with the additions of Ce and Sr to the alloys. Moreover, the grain size of dendriticα(Al) phase is well refined, and the nucleation temperatures of primaryα(Al) dendrites are decreased with the additions of Ce and Sr. The effects of elements Ce and Sr additions on kinetic nucleation of primary α(Al) phases were also discussed in hypoeutectic Al-7%Si-Mg cast alloy.
文摘It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. .