Objective:To evaluate the antibacterial activity of zinc oxide nanoparticles synthesized using phycobilins of Anabaena variabilis NTSS17.Methods:The cyanobacterial isolate was collected from paddy field and morphologi...Objective:To evaluate the antibacterial activity of zinc oxide nanoparticles synthesized using phycobilins of Anabaena variabilis NTSS17.Methods:The cyanobacterial isolate was collected from paddy field and morphologically identified as Anabaena variabilis NTSS17,that produces a pigment i.e.phycobiliproteins.The biosynthesized zinc nanoparticles were characterized by different spectroscopic and analytical techniques such as UV-visible spectrophotometer,Fourier transform infrared spectroscopy and X-ray diffraction which confirmed the formation of zinc nanoparticles.Results:Antibacterial activity of zinc oxide nanoparticles was examined against Escherichia coli,Rhodococcus rhodochrous and Pseudomonas aeruginosa.The maximum zone of inhibition occurred at 5 mg/1000 mL concentration of zinc oxide nanoparticles.Conclusions:Due to potent antimicrobial and intrinsic properties of zinc oxide,it can be actively used for biomedical applications.展开更多
基金Supported by DST(Ref No.DST/IS-STAC/CO2-SR-163/13(G)).
文摘Objective:To evaluate the antibacterial activity of zinc oxide nanoparticles synthesized using phycobilins of Anabaena variabilis NTSS17.Methods:The cyanobacterial isolate was collected from paddy field and morphologically identified as Anabaena variabilis NTSS17,that produces a pigment i.e.phycobiliproteins.The biosynthesized zinc nanoparticles were characterized by different spectroscopic and analytical techniques such as UV-visible spectrophotometer,Fourier transform infrared spectroscopy and X-ray diffraction which confirmed the formation of zinc nanoparticles.Results:Antibacterial activity of zinc oxide nanoparticles was examined against Escherichia coli,Rhodococcus rhodochrous and Pseudomonas aeruginosa.The maximum zone of inhibition occurred at 5 mg/1000 mL concentration of zinc oxide nanoparticles.Conclusions:Due to potent antimicrobial and intrinsic properties of zinc oxide,it can be actively used for biomedical applications.