期刊文献+
共找到280,568篇文章
< 1 2 250 >
每页显示 20 50 100
Effective NSGA-II Algorithm for a Limited AGV Scheduling Problem in Matrix Manufacturing Workshops with Undirected Material Flow
1
作者 Xuewu Wang Jianing Zhang +1 位作者 Yi Hua Rui Yu 《Complex System Modeling and Simulation》 2025年第1期68-85,共18页
Automatic guided vehicles(AGVs)are extensively employed in manufacturing workshops for their high degree of automation and flexibility.This paper investigates a limited AGV scheduling problem(LAGVSP)in matrix manufact... Automatic guided vehicles(AGVs)are extensively employed in manufacturing workshops for their high degree of automation and flexibility.This paper investigates a limited AGV scheduling problem(LAGVSP)in matrix manufacturing workshops with undirected material flow,aiming to minimize both total task delay time and total task completion time.To address this LAGVSP,a mixed-integer linear programming model is built,and a nondominated sorting genetic algorithm II based on dual population co-evolution(NSGA-IIDPC)is proposed.In NSGA-IIDPC,a single population is divided into a common population and an elite population,and they adopt different evolutionary strategies during the evolution process.The dual population co-evolution mechanism is designed to accelerate the convergence of the non-dominated solution set in the population to the Pareto front through information exchange and competition between the two populations.In addition,to enhance the quality of initial population,a minimum cost function strategy based on load balancing is adopted.Multiple local search operators based on ideal point are proposed to find a better local solution.To improve the global exploration ability of the algorithm,a dual population restart mechanism is adopted.Experimental tests and comparisons with other algorithms are conducted to demonstrate the effectiveness of NSGA-IIDPC in solving the LAGVSP. 展开更多
关键词 limited automatic guided vehicle(AGV)scheduling problem nondominated sorting genetic algorithm II(nsga-ii) dual population co-evolution matrix manufacturing workshop
原文传递
A^(*)与NSGA-II融合的船舶气象航线多目标规划方法 被引量:1
2
作者 李元奎 索基源 +3 位作者 于东冶 张新宇 杨放 杨雪锋 《中国舰船研究》 北大核心 2025年第3期288-295,共8页
[目的]面向我国智能航运和气象导航国产化的发展要求,提出一种基于A^(*)与非支配排序遗传算法(NSGA-II)融合的船舶多目标航线规划方法,以适应复杂多样的远洋航行任务。[方法]通过将A^(*)算法引入至NSGA-II中引导搜索方向加快算法收敛速... [目的]面向我国智能航运和气象导航国产化的发展要求,提出一种基于A^(*)与非支配排序遗传算法(NSGA-II)融合的船舶多目标航线规划方法,以适应复杂多样的远洋航行任务。[方法]通过将A^(*)算法引入至NSGA-II中引导搜索方向加快算法收敛速度,然后通过构建环境数据模型和目标函数,采用跨太平洋航线对模型和算法进行仿真验证。[结果]仿真结果表明:设计的模型和算法可求解得到分布均匀、多样化的Pareto最优航线解集,所有航线均可以顺利躲避大风浪区域,且可根据决策者需求选择船舶最适航线。[结论]所提方法可用于多约束条件下的船舶远洋航线优化,求解符合航次目标的航线,从而降低营运成本、提高航运效率,对船舶气象导航和未来船舶智能航行具有一定的支撑作用。 展开更多
关键词 气象航线 多目标优化 A^(*)算法 nsga-ii 智能航行 遗传算法
在线阅读 下载PDF
基于NSGA-II目标优化的BIM建筑节能效果分析
3
作者 潘伟 《建设科技》 2025年第12期56-58,共3页
为客观评价建筑节能效果,确定科学可行的建筑节能优化方法,本文提出集非支配排序遗传算法第二代与BIM技术于一体的建筑节能优化策略。通过对NSGA-II算法的了解,建立建筑节能效果优化模型,阐述模型求解方法。在了解研究方法的基本理论后... 为客观评价建筑节能效果,确定科学可行的建筑节能优化方法,本文提出集非支配排序遗传算法第二代与BIM技术于一体的建筑节能优化策略。通过对NSGA-II算法的了解,建立建筑节能效果优化模型,阐述模型求解方法。在了解研究方法的基本理论后,以某高层住宅建筑为例进行实例研究,构建BIM模型,评价建筑节能优化方法的实施效果。研究表明,建筑节能效果良好,通过节能优化措施的落实,有效降低建筑能源消耗。本文方法为建筑节能优化提供理论参考,根据建筑建设条件和使用条件采取针对性的节能优化策略,促进建筑行业朝着节能环保的方向发展。 展开更多
关键词 nsga-ii BIM 建筑 节能 效果
在线阅读 下载PDF
基于NSGA-II和响应面法的交错内肋微通道热沉的多目标优化 被引量:3
4
作者 吕进 彭毅 +1 位作者 关小雅 杨冲 《工程热物理学报》 北大核心 2025年第2期627-637,共11页
微通道热沉因其优越的散热性能,在高性能电子器件散热领域备受青睐。为有效提高交错内肋微通道热沉的散热性能,本文面向交错内肋微通道的多目标优化问题,将非支配排序遗传算法II(NSGA-II)与响应面法相结合,在满足微通道进出口压降最小... 微通道热沉因其优越的散热性能,在高性能电子器件散热领域备受青睐。为有效提高交错内肋微通道热沉的散热性能,本文面向交错内肋微通道的多目标优化问题,将非支配排序遗传算法II(NSGA-II)与响应面法相结合,在满足微通道进出口压降最小和换热面最大温差最小的条件下进行优化。采用Box-Behnken实验设计方法,以肋片迎流角、肋片间距和肋片高度为设计变量,进出口压降和换热面最大温差为目标函数,对热沉的流动和传热性能进行数值模拟研究。为降低进出口压降和提高温度均匀性,采用NSGA-II对微通道热沉的几何参数进行优化,与原设计相比,采用NSGA-II得到的Pareto最优解在进出口压降几乎不变的情况下,换热面最大温差降低了34.922%,在相同泵功下,综合传热性能提高了9.415%。 展开更多
关键词 微通道 数值模拟 多目标优化 nsga-ii 响应面法
原文传递
Optimal retrofitting scenarios of multi-objective energy-efficient historic building under different national goals integrating energy simulation,reduced order modelling and NSGA-II algorithm 被引量:1
5
作者 Hailu Wei Yuanhao Jiao +2 位作者 Zhe Wang Wei Wang Tong Zhang 《Building Simulation》 SCIE EI CSCD 2024年第6期933-954,共22页
Retrofitting a historic building under different national goals involves multiple objectives,constraints,and numerous potential measures and packages,therefore it is time-consuming and challenging during the early des... Retrofitting a historic building under different national goals involves multiple objectives,constraints,and numerous potential measures and packages,therefore it is time-consuming and challenging during the early design stage.This study introduces a systematic retrofitting approach that incorporates standard measures for the building envelope(walls,windows,roof),as well as the heating,cooling,and lighting systems.Three retrofit objectives are delineated based on prevailing Chinese standards.The retrofit measures function as genes to optimize energy-savings,carbon emissions,and net present value(NPV)by employing a log-additive decomposition approach through energy simulation techniques and NSGA-II,yielding 185,163,and 8 solutions.Subsequently,a weighted sum method is proposed to derive optimal solutions across multiple scenarios.The framework is applied to a courtyard building in Nanjing,China,and the outcomes of the implementation are scrutinized to ascertain the optimal retrofit package under various scenarios.Through this retrofit,energy consumption can be diminished by up to 63.62%,resulting in an NPV growth of 151.84%,and maximum rate of 60.48%carbon reduction.These three result values not only indicate that the optimal values are achieved in these three aspects of energy saving,carbon reduction and economy,but also show the possibility of possible equilibrium in this multi-objective optimization problem.The framework proposed in this study effectively addresses the multi-objective optimization challenge in building renovation by employing a reliable optimization algorithm with a computationally efficient reduced-order model.It provides valuable insights and recommendations for optimizing energy retrofit strategies and meeting various performance objectives. 展开更多
关键词 historic building energy-efficient retrofitting building energy simulation log-additive decomposition approach nsga-ii
原文传递
基于IPSO和NSGA-II方法的考虑储能配电网拓扑规划
6
作者 肖冲 肖勇 《现代工业经济和信息化》 2025年第9期134-135,138,共3页
设计了一种基于IPSO和NSGA-II方法的考虑储能配电网拓扑规划方法,确定了多目标算法原理。研究结果表明:所提算法进行处理时则能够消除受多峰函数影响而产生局部最优情况,获得更可靠结果。所提算法获得了比PSO算法与NSGA-II算法更小的平... 设计了一种基于IPSO和NSGA-II方法的考虑储能配电网拓扑规划方法,确定了多目标算法原理。研究结果表明:所提算法进行处理时则能够消除受多峰函数影响而产生局部最优情况,获得更可靠结果。所提算法获得了比PSO算法与NSGA-II算法更小的平均最优适应度,表现出来更优的性能,减少了算法运算的迭代次数,促进收敛精度的显著提升。该研究有效提高电网规划效率和节能效果,具有很高的应用价值。 展开更多
关键词 电网规划 适应度 改进粒子群算法 nsga-ii算法
在线阅读 下载PDF
Auto-tuning PVT data using multi-objective optimization:Application of NSGA-II algorithm
7
作者 Abdolhadi Zarifi Mohammad Madani Mohammad Jafarzadegan 《Petroleum》 EI CSCD 2024年第1期135-149,共15页
Reservoir simulation is known as perhaps the most widely used,accurate,and reliable method for field development in the petroleum industry.An integral part of a reliable reservoir simulation process is to consider rob... Reservoir simulation is known as perhaps the most widely used,accurate,and reliable method for field development in the petroleum industry.An integral part of a reliable reservoir simulation process is to consider robust and rigorous tuned EOS models.Traditionally,EOS models are tuned iteratively through arduous workflows against experimental PVT data.However,this comes with a number of drawbacks such as forcingly using weight factors,which upon alteration adversely affects the optimization process.The objective of the current work is thus to introduce an auto-tune PVT matching tool using NSGA-II multi-objective optimization.In order to illustrate the robustness of the presented technique,three different PVT samples are used,including two black-oil and one gas condensate sample.We utilize PengRobinson EOS during all the manual and auto-tuning processes.Comparison of auto-tuned EOS-generated results with those of experimental and computed statistical error values for these samples clearly show that the proposed method is robust.In addition,the proposed method,contrary to the manual matching process,provides the engineer with several matched solutions,which allows them to select a match based on the engineering background to be best amenable to the problem at hand.In addition,the proposed technique is fast,and can output several solutions within less time compared to the traditional manual matching method. 展开更多
关键词 AUTO-TUNING PVT Equation of state nsga-ii Multi-objective optimization
原文传递
基于NSGA-II算法的火电-新能源容量比例配置优化
8
作者 赵焕林 陈衡 +2 位作者 李金航 高悦 潘佩媛 《洁净煤技术》 北大核心 2025年第S1期222-229,共8页
为促进电力系统的低碳化转型,降低能源消耗和二氧化碳排放量,合理规划可再生能源与火电的装机容量比例,降低系统成本,减少弃风弃光情况的出现,首先建立火风光水电力系统成本模型,构建非支配排序多目标遗传算法(Non-dominated Sorting Ge... 为促进电力系统的低碳化转型,降低能源消耗和二氧化碳排放量,合理规划可再生能源与火电的装机容量比例,降低系统成本,减少弃风弃光情况的出现,首先建立火风光水电力系统成本模型,构建非支配排序多目标遗传算法(Non-dominated Sorting Genetic Algorithm II,NSGA-II),并以系统总成本最低、可再生能源发电量最大为目标,进行电力系统装机容量配置优化。并对模型的合理性进行验证,研究表明:应用NSGA-II算法对火电-新能源容量比例配置优化结果具有合理性,在我国西北某地区火电∶新能源=1∶1.5最佳;火电机组灵活性改造对新能源装机的承载能力与消纳能力具有一定提升,但长期作用有限;当前情况下,过度提高新能源装机容量占比将会增加弃风弃光量与系统总成本,其中,风电装机容量较大时系统总成本增加较多;考虑火电机组灵活性改造与储能装机加入的情况下,火电占比降至40%较好。 展开更多
关键词 新能源消纳 火电 容量比例配置 nsga-ii算法 灵活性改造
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
9
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
10
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
11
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
基于改进NSGA-II的多目标生鲜冷链配送路径优化
12
作者 廖伊杰 孟芳 《电子商务评论》 2025年第1期2452-2462,共11页
随着我国电商行业的迅猛发展以及国家对相关减排政策的大力倡导与推行,针对物流企业使用电动冷藏车开展生鲜冷链运输的具体情境,构建了一个能够同时考虑企业在配送过程中所产生的综合运输成本、碳排放量及配送水平的多目标优化模型。在N... 随着我国电商行业的迅猛发展以及国家对相关减排政策的大力倡导与推行,针对物流企业使用电动冷藏车开展生鲜冷链运输的具体情境,构建了一个能够同时考虑企业在配送过程中所产生的综合运输成本、碳排放量及配送水平的多目标优化模型。在NSGA-II算法中引入了佳点集生成初始种群、自适应交叉变异概率和模拟退火辅助局部搜索的改进策略。实验结果显示,改进后的算法有效克服了传统NSGA-II算法对初始种群敏感、局部搜索能力有限、收敛速度较慢等问题,获得了更优质的Pareto解集,从而验证了该改进算法的有效性。With the rapid development of China’s e-commerce industry and the country’s strong advocacy and implementation of relevant emission reduction policies, a multi-objective optimization model is constructed to consider the comprehensive transportation cost, carbon emissions and distribution level generated by enterprises in the distribution process, aiming at the specific situation of logistics enterprises using electric refrigerated trucks to carry out fresh cold chain transportation. In NSGA-II algorithm, the improved strategies of generating initial population with good point set, adaptive cross-mutation probability and simulated annealing assisted local search are introduced. Experimental results show that the improved algorithm effectively overcomes the problems of the traditional NSGA-II algorithm, such as sensitivity to the initial population, limited local search ability and slow convergence speed, and obtains a better Pareto solution set, thus verifying the effectiveness of the improved algorithm. 展开更多
关键词 电动冷藏车 冷链物流 路径优化 改进nsga-ii 多目标优化
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
13
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
基于改进NSGA-II的综合能源系统多目标优化研究 被引量:1
14
作者 宁童 黄伟 《上海电力大学学报》 2025年第1期28-34,共7页
针对可再生能源的不稳定性和波动性问题,传统的多目标优化算法在解决这类问题时,往往面临收敛速度慢、解集多样性不足,以及在高维问题中效率低下等挑战。为此,提出了一种改进的第二代非支配排序遗传算法(NSGA-II),专门用于含非凸约束的... 针对可再生能源的不稳定性和波动性问题,传统的多目标优化算法在解决这类问题时,往往面临收敛速度慢、解集多样性不足,以及在高维问题中效率低下等挑战。为此,提出了一种改进的第二代非支配排序遗传算法(NSGA-II),专门用于含非凸约束的综合能源系统多目标运行优化问题。该算法在传统综合能源系统中引入了电转气技术和多元储能模块,旨在克服传统优化算法的缺点,包括收敛速度慢、解集多样性不足和效率低下等问题。算例分析结果表明,所提算法可使运行总成本最多降低19.26%,碳排放量最多减少17.24%,从而验证了该算法的优越性和可靠性。 展开更多
关键词 综合能源系统 改进nsga-ii 多目标优化 电转气
在线阅读 下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
15
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
基于NSGA-II的货物装车最优规划
16
作者 张远 张浩丰 《起重运输机械》 2025年第16期44-51,共8页
在智能物流运输行业,货物装车是一个关键环节。由于货物的体积和质量各不相同,因此需要合理的装载方案以最大限度利用货车车厢空间,降低运输成本,提高运输安全。文中针对货物二维装车问题,提出了一种基于NSGA-II多目标优化的遗传算法。... 在智能物流运输行业,货物装车是一个关键环节。由于货物的体积和质量各不相同,因此需要合理的装载方案以最大限度利用货车车厢空间,降低运输成本,提高运输安全。文中针对货物二维装车问题,提出了一种基于NSGA-II多目标优化的遗传算法。通过建立问题的数学模型,设计一种混合编码的表示方案,利用Pareto前沿等算法获得多目标优化问题的最优解集。研究建立的装车问题多目标优化框架,不仅为物流智能装车提供有效解决方案,其核心算法设计思路也可推广至其他类似场景。未来研究将重点突破三维货物装车、大规模实时优化算法以及数字孪生系统的深度融合。 展开更多
关键词 智能物流 二维装车 遗传算法 nsga-ii PARETO前沿 多目标优化 优化算法
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
17
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
18
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
基于SLP与NSGA-II的KF公司通用阀车间布局优化
19
作者 陈洪鑫 《科技和产业》 2025年第13期40-50,共11页
针对因KF公司通用阀车间布局不合理而导致物料搬运交叉多、搬运成本高、面积利用率低等问题,构建考虑物料顺、逆流动方向的,以最小化物料搬运成本、最大化非物流关系和车间面积利用率为目标的布局优化模型。运用系统布置设计(SLP)方法... 针对因KF公司通用阀车间布局不合理而导致物料搬运交叉多、搬运成本高、面积利用率低等问题,构建考虑物料顺、逆流动方向的,以最小化物料搬运成本、最大化非物流关系和车间面积利用率为目标的布局优化模型。运用系统布置设计(SLP)方法对车间布局进行优化得到初步布局方案。在传统非支配排序遗传算法(NSGA-II)的基础上,为提高算法初始种群的多样性将SLP方法得到的初步布局方案编码作为初始种群的一部分,将自适应控制策略引入交叉、变异操作中,并加入模拟退火算法。最后使用层次分析法(AHP)对算法得到的一组Pareto最优解集进行优化方案决策。结果表明,此方法能使物料搬运成本减少38.83%,非物流关系增加了44.83%,车间面积利用率优化了19.50%,证明了该模型在车间布局优化时的有效性。 展开更多
关键词 车间布局 多目标优化 nsga-ii(非支配排序遗传算法) SLP(系统布置设计)
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
20
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部