期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CatBoost-NSGA-Ⅲ的盾构隧道施工参数分析及优化控制 被引量:3
1
作者 陈礼博 张明书 +2 位作者 陈海勇 吴贤国 曹源 《隧道建设(中英文)》 CSCD 北大核心 2024年第8期1587-1598,共12页
由于盾构在施工过程中受环境、设备和作业等不确定因素的影响,导致隧道开挖的安全性、效率和成本难以协调。针对这种情况,以武汉轨道交通某标段施工为依托,采用基于梯度增强(CatBoost)和非支配排序遗传算法(NSGA-Ⅲ)的混合算法,在全面... 由于盾构在施工过程中受环境、设备和作业等不确定因素的影响,导致隧道开挖的安全性、效率和成本难以协调。针对这种情况,以武汉轨道交通某标段施工为依托,采用基于梯度增强(CatBoost)和非支配排序遗传算法(NSGA-Ⅲ)的混合算法,在全面考虑掘进效率、成本、安全风险等因素的基础上,选择以推进速度、掘进比能、刀具磨损量为目标,构建施工参数智能控制决策系统。首先,通过CatBoost回归模型预测盾构隧道推进速度、掘进比能和刀具磨损量,得到控制目标的适应度函数;然后,基于CatBoost预测模型构建的适应度函数,利用CatBoost-NSGA-Ⅲ进行施工参数的多目标优化;最后,通过模糊决策法从多个Pareto最优解集中选出最佳的施工参数组合,为隧道盾构掘进参数智能预测与优化提供参考。结果表明:1)Catboost可以进行模型精准预测,拟合优度R2大于0.9,均方根误差RMSE和平均绝对误差MAE较小;2)Catboost-NSGA-Ⅲ多目标优化,模糊决策法确定最优方案。经过优化,相较于实测数据的平均值,掘进比能和刀具磨损量分别降低5.3%和13.5%、掘进速度提升6.3%,为盾构隧道的智能化掘进控制和管理决策提供依据。 展开更多
关键词 盾构施工 推进速度 掘进比能 刀具磨损量 施工参数 多目标优化 CatBoost-nsga-算法
在线阅读 下载PDF
Multiobjective car relocation problem in one-way carsharingsystem
2
作者 Rabih Zakaria Mohammad Dib Laurent Moalic 《Journal of Modern Transportation》 2018年第4期297-314,共18页
In this paper, we present a multiobjective approach for solving the one-way car relocation problem.We fix three objectives that include the number of remaining rejected demands, the number of jockeys used for the relo... In this paper, we present a multiobjective approach for solving the one-way car relocation problem.We fix three objectives that include the number of remaining rejected demands, the number of jockeys used for the relocation operations, and the total time used by these jockeys. For this sake, we propose to apply two algorithms namely NSGA-Ⅱ and an adapted memetic algorithm(MA) that we call MARPOCS which stands for memetic algorithm for the one-way carsharing system. The NSGA-Ⅱ is used as a reference to compare the performance of MARPOCS. The comparison of the approximation sets obtained by both algorithms shows that the hybrid algorithm outperforms the classical NSGA-Ⅱ and so solutions generated by the MARPOCS are much better than the solutions generated by NSGA-Ⅱ. This observation is proved by the comparison of different quality indicators’ values that are used to compare the performance of each algorithm. Results show that the MARPOCS is promising to generate very good solutions for the multiobjective car relocation problem in one-way carsharing system. It shows a good performance in exploring the search space and in finding solution with very good fitness values. 展开更多
关键词 CARSHARING Car relocation Integer linear programming(ILP) multiobjective optimization Memetic algorithm nsga-
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部