通过并网整合、站点加密、差站迁建和软件升级,建立网形更优、覆盖更广的新一代昆明市卫星定位综合服务系统(Kunming Continuously Operating Reference Stations,KMCORS)。在KMCORS的NRTK(Network Real Time Kinematic,网络实时动态定...通过并网整合、站点加密、差站迁建和软件升级,建立网形更优、覆盖更广的新一代昆明市卫星定位综合服务系统(Kunming Continuously Operating Reference Stations,KMCORS)。在KMCORS的NRTK(Network Real Time Kinematic,网络实时动态定位技术)性能测试中,于C级测试点CD(长地)和DY(大营)处发现定位异常问题,为分析其原因,进行测试点原成果检核和对流层异常探测工作。结果表明,DY点位因施工发生偏移,其修正坐标符合NRTK定位结果;CD点对流层状态异常,与临近CORS站存在显著差异,致使其对流层延迟未能有效订正,最终造成较大的高程误差。今后,将收集CD附近区域的观测数据,用以精化KMCORS现有的对流层模型。展开更多
Nowadays many positioning techniques and methods are applied to the cadastral surveys. Starting from last decade, GPS/GNSS positioning had become one of the most used methodology thanks to the rapid development of sat...Nowadays many positioning techniques and methods are applied to the cadastral surveys. Starting from last decade, GPS/GNSS positioning had become one of the most used methodology thanks to the rapid development of satellite-based positioning and to the appearance of GNSS mass-market receivers and antennas. Methods based on these instruments are more affordable than the conventional ones even if their use for precise positioning is not so intuitive. This study is aimed to evaluate the use of singlefrequency GPS/GNSS mass-market receivers for cadastral surveys, considering both single-base RealTime Kinematic(RTK) and Network Real-Time Kinematic(NRTK) methodologies. Furthermore, a particular tool for predicting and estimating the occurrence of false fix of the phase ambiguities has been considered, in order to improve the accuracy and precision of the solutions. Considering the single-base positioning, the research results showed the difference of a few centimetres between the reference coordinates and the estimated ones if the distance between master and rover is less than 3 km, while considering the network positioning and the Virtual Reference Station correction, the difference are about a couple of centimetres for East and North component, and about 5 cm for the Up.展开更多
Initialization speed is one of the most important factors in network real time kinematic(NRTK)performance.Owing to the low correlation among the error sources of reference stations,it is difficult to fix reference sta...Initialization speed is one of the most important factors in network real time kinematic(NRTK)performance.Owing to the low correlation among the error sources of reference stations,it is difficult to fix reference station ambiguities of long-range NRTK quickly.In traditional reference stations ambiguity resolution(AR)methods,baselines are usually solved independently which is called baseline solution(BS)mode in this study.Because the correlations among baselines are not taken into consideration in ambiguities estimation,the AR speed is slow.Generally,tens of minutes or longer time is required to initialize.We propose a network solution(NS)mode approach,in which the correlations among the double-difference ambiguities(DDAs)as well as double-difference ionospheric delays(DDIDs)of different baselines are considered in estimating float ambiguity solutions.Experimental results show that the float ambiguity solutions obtained are more accurate with an improved consistency.Thus,initialization speed is significantly increased by 18%in NS mode.展开更多
The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance an...The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance and reliability, their potential use in different fields, the improvement of performance and combined systems, etc. Single-frequency GNSS receivers, which for a long time remained the only category of low-cost GNSS receivers, often limited by their level of accuracy (metric) mainly due to their single-frequency nature, have been joined in the last decade by dual-frequency GNSS receivers developed by certain manufacturers of positioning equipment. These receivers now offer possible alternatives to the relatively expensive conventional (topographic quality) or geodetic receivers and. In this study, the performance of these low-cost dual-frequency receivers was evaluated in static and real-time kinematic GNSS positioning modes. Static positioning was carried out on three points with sessions of 2 h and 4 h over three days with antenna swapping (CHC i50, Leica GS14 and Emlid Reach RS2+). Real-time observations were carried out on eleven (11) points in open, poorly open and not at all open environments, in order to assess not only performance but also receiver sensitivity in environments with a high risk of multipath. The results obtained showed an average agreement of 2 cm in planimetry between the low-cost Emlid RS2+ receiver and the Leica GS14 and CHC i50 receivers. The differences in altimetry are nevertheless greater (sometimes up to decimetres for certain points). Real-time positioning results provided an average convergence of around 1 cm on the E, N and H components with the results from the low-cost Emlid Reach RS2+ and Ublox ZED-F9P receivers and the CHC i50 receiver. Analysis of the results obtained has enabled us to highlight the various issues and challenges associated with this new generation of GNSS receivers, with a view to enhancing their appropriation and optimal integration in the professional and research worlds.展开更多
The use of multiple GNSS constellations has been beneficiary to positioning performances and reliability in recent times, especially in low cost mass-market setups. Along with GPS and GLONASS, GALILEO and BDS are the ...The use of multiple GNSS constellations has been beneficiary to positioning performances and reliability in recent times, especially in low cost mass-market setups. Along with GPS and GLONASS, GALILEO and BDS are the other two constellations aiming for global coverage. With ample research demonstrating the benefits of GALILEO in the European region, there has been a lack of study to demonstrate the performance of BDS in Europe, especially with mass-market GNSS receivers. This study makes a comparison of the performances between the combined GPS-GLONASS and GPS-BDS constellations in Europe with such receivers. Static open sky and kinematic urban environment tests are performed with two GNSS receivers as master and rover at short baselines and the RTK and double differenced post processed solutions are analyzed. The pros and cons of both the constellation choices is demonstrated in terms of fixed solution accuracies, percentage of false fixes, time to first fix for RTK and float solution accuracies for post processed measurements. Centimeter level accuracy is achieved in both constellations for static positioning with GPS-BDS combination having a slightly better performance in comparable conditions and smaller intervals. GPS-GLONASS performed slightly better for longer intervals due to the current inconsistent availability of BDS satellites. Even if the static tests have shown a better performance of GPS-BDS combination, the kinematic results show that there are no significant differences between the two tested configurations.展开更多
文摘通过并网整合、站点加密、差站迁建和软件升级,建立网形更优、覆盖更广的新一代昆明市卫星定位综合服务系统(Kunming Continuously Operating Reference Stations,KMCORS)。在KMCORS的NRTK(Network Real Time Kinematic,网络实时动态定位技术)性能测试中,于C级测试点CD(长地)和DY(大营)处发现定位异常问题,为分析其原因,进行测试点原成果检核和对流层异常探测工作。结果表明,DY点位因施工发生偏移,其修正坐标符合NRTK定位结果;CD点对流层状态异常,与临近CORS站存在显著差异,致使其对流层延迟未能有效订正,最终造成较大的高程误差。今后,将收集CD附近区域的观测数据,用以精化KMCORS现有的对流层模型。
文摘Nowadays many positioning techniques and methods are applied to the cadastral surveys. Starting from last decade, GPS/GNSS positioning had become one of the most used methodology thanks to the rapid development of satellite-based positioning and to the appearance of GNSS mass-market receivers and antennas. Methods based on these instruments are more affordable than the conventional ones even if their use for precise positioning is not so intuitive. This study is aimed to evaluate the use of singlefrequency GPS/GNSS mass-market receivers for cadastral surveys, considering both single-base RealTime Kinematic(RTK) and Network Real-Time Kinematic(NRTK) methodologies. Furthermore, a particular tool for predicting and estimating the occurrence of false fix of the phase ambiguities has been considered, in order to improve the accuracy and precision of the solutions. Considering the single-base positioning, the research results showed the difference of a few centimetres between the reference coordinates and the estimated ones if the distance between master and rover is less than 3 km, while considering the network positioning and the Virtual Reference Station correction, the difference are about a couple of centimetres for East and North component, and about 5 cm for the Up.
基金supported in part by the National Key Research and Development Program of China(Grant No.2016YFB0800401)in part by the National Natural Science Foundation of China(Grant Nos.61621003,61532020&11472290).
文摘Initialization speed is one of the most important factors in network real time kinematic(NRTK)performance.Owing to the low correlation among the error sources of reference stations,it is difficult to fix reference station ambiguities of long-range NRTK quickly.In traditional reference stations ambiguity resolution(AR)methods,baselines are usually solved independently which is called baseline solution(BS)mode in this study.Because the correlations among baselines are not taken into consideration in ambiguities estimation,the AR speed is slow.Generally,tens of minutes or longer time is required to initialize.We propose a network solution(NS)mode approach,in which the correlations among the double-difference ambiguities(DDAs)as well as double-difference ionospheric delays(DDIDs)of different baselines are considered in estimating float ambiguity solutions.Experimental results show that the float ambiguity solutions obtained are more accurate with an improved consistency.Thus,initialization speed is significantly increased by 18%in NS mode.
文摘The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance and reliability, their potential use in different fields, the improvement of performance and combined systems, etc. Single-frequency GNSS receivers, which for a long time remained the only category of low-cost GNSS receivers, often limited by their level of accuracy (metric) mainly due to their single-frequency nature, have been joined in the last decade by dual-frequency GNSS receivers developed by certain manufacturers of positioning equipment. These receivers now offer possible alternatives to the relatively expensive conventional (topographic quality) or geodetic receivers and. In this study, the performance of these low-cost dual-frequency receivers was evaluated in static and real-time kinematic GNSS positioning modes. Static positioning was carried out on three points with sessions of 2 h and 4 h over three days with antenna swapping (CHC i50, Leica GS14 and Emlid Reach RS2+). Real-time observations were carried out on eleven (11) points in open, poorly open and not at all open environments, in order to assess not only performance but also receiver sensitivity in environments with a high risk of multipath. The results obtained showed an average agreement of 2 cm in planimetry between the low-cost Emlid RS2+ receiver and the Leica GS14 and CHC i50 receivers. The differences in altimetry are nevertheless greater (sometimes up to decimetres for certain points). Real-time positioning results provided an average convergence of around 1 cm on the E, N and H components with the results from the low-cost Emlid Reach RS2+ and Ublox ZED-F9P receivers and the CHC i50 receiver. Analysis of the results obtained has enabled us to highlight the various issues and challenges associated with this new generation of GNSS receivers, with a view to enhancing their appropriation and optimal integration in the professional and research worlds.
文摘The use of multiple GNSS constellations has been beneficiary to positioning performances and reliability in recent times, especially in low cost mass-market setups. Along with GPS and GLONASS, GALILEO and BDS are the other two constellations aiming for global coverage. With ample research demonstrating the benefits of GALILEO in the European region, there has been a lack of study to demonstrate the performance of BDS in Europe, especially with mass-market GNSS receivers. This study makes a comparison of the performances between the combined GPS-GLONASS and GPS-BDS constellations in Europe with such receivers. Static open sky and kinematic urban environment tests are performed with two GNSS receivers as master and rover at short baselines and the RTK and double differenced post processed solutions are analyzed. The pros and cons of both the constellation choices is demonstrated in terms of fixed solution accuracies, percentage of false fixes, time to first fix for RTK and float solution accuracies for post processed measurements. Centimeter level accuracy is achieved in both constellations for static positioning with GPS-BDS combination having a slightly better performance in comparable conditions and smaller intervals. GPS-GLONASS performed slightly better for longer intervals due to the current inconsistent availability of BDS satellites. Even if the static tests have shown a better performance of GPS-BDS combination, the kinematic results show that there are no significant differences between the two tested configurations.