期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于有序NPsim矩阵的颜色近邻搜索
1
作者 张廷 王功明 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第2期377-385,共9页
基于光谱表示法颜色近邻搜索的核心是高维向量近邻搜索,相似性度量和索引树构建是影响其性能的关键,前者存在等距性问题,后者存在构建困难、查询效率低、不易动态调整等问题,从而严重影响颜色近邻搜索算法的性能。使用NPsim函数计算颜... 基于光谱表示法颜色近邻搜索的核心是高维向量近邻搜索,相似性度量和索引树构建是影响其性能的关键,前者存在等距性问题,后者存在构建困难、查询效率低、不易动态调整等问题,从而严重影响颜色近邻搜索算法的性能。使用NPsim函数计算颜色相似性,结合有序矩阵组织颜色空间数据,提出一种基于有序NPsim矩阵的颜色近邻搜索算法。首先,计算颜色空间中所有颜色之间的NPsim值,构建反映所有颜色相似性关系的NPsim矩阵;然后,按照每种颜色与其他颜色的相似性,对NPsim矩阵的每行元素降序排列,从而得到反映每种颜色与其他颜色相似性大小关系的有序NPsim矩阵;最后,对于颜色空间中任意给定的颜色,根据它在有序NPsim矩阵中的行号,就能够直接找到该颜色的所有近邻。采用蒙赛尔全光泽色系光谱构建有序NPsim矩阵,同时建立KD树和SR树,分别进行K近邻搜索,并从精度和速度两方面比较。在精度方面,本算法得到的颜色近邻与查询颜色距离最近、相似性最好,存在逆序现象的近邻个数最少;在速度方面,构建有序NPsim矩阵的时间比构建KD树和SR树的时间要长,但近邻搜索速度是KD树/SR树的1万倍左右,而且与K值无关;此外,构建有序NPsim矩阵易于并行化,而构建KD树和SR树不易并行化,并行化后构建有序NPsim矩阵的速度会超过构建KD树和SR树的速度。实验结果表明该方法适用于颜色近邻搜索。 展开更多
关键词 颜色 近邻搜索 光谱 相似性 索引树 有序npsim矩阵 蒙赛尔
在线阅读 下载PDF
A nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix
2
作者 李文法 Wang Gongming +1 位作者 Ma Nan Liu Hongzhe 《High Technology Letters》 EI CAS 2016年第3期241-247,共7页
Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculat... Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculate similarity. And a sequential NPsim matrix is built to improve indexing performance. To sum up the above innovations,a nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix is proposed in comparison with the nearest neighbor search algorithms based on KD-tree or SR-tree on Munsell spectral data set. Experimental results show that the proposed algorithm similarity is better than that of other algorithms and searching speed is more than thousands times of others. In addition,the slow construction speed of sequential NPsim matrix can be increased by using parallel computing. 展开更多
关键词 nearest neighbor search high-dimensional data SIMILARITY indexing tree npsim KD-TREE SR-tree Munsell
在线阅读 下载PDF
Similarity measurement method of high-dimensional data based on normalized net lattice subspace 被引量:4
3
作者 李文法 Wang Gongming +1 位作者 Li Ke Huang Su 《High Technology Letters》 EI CAS 2017年第2期179-184,共6页
The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities... The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity,leading to the dissimilarities between any results.A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed.The data range of each dimension is divided into several intervals,and the components in different dimensions are mapped onto the corresponding interval.Only the component in the same or adjacent interval is used to calculate the similarity.To validate this method,three data types are used,and seven common similarity measurement methods are compared.The experimental result indicates that the relative difference of the method is increasing with the dimensionality and is approximately two or three orders of magnitude higher than the conventional method.In addition,the similarity range of this method in different dimensions is [0,1],which is fit for similarity analysis after dimensionality reduction. 展开更多
关键词 high-dimensional data the curse of dimensionality SIMILARITY NORMALIZATION SUBSPACE npsim
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部