Almost half of the oceanic water columns exhibit double-diffusion. The importance of double-diffusion in global oceans’ salt and heat fluxes, water-mass formation and mixing, and circulation is increasingly recognize...Almost half of the oceanic water columns exhibit double-diffusion. The importance of double-diffusion in global oceans’ salt and heat fluxes, water-mass formation and mixing, and circulation is increasingly recognized. However, such an important physical process in the ocean has not been well studied. One of the reasons is the difficulty of parameterizing and quantifying the processes. The paper presented here attempts to quantify the double-diffusive fluxes of salt and heat in the ocean. Previous qualitative analysis by applying the water-mass Turner angle, mTu, to the North Pacific Intermediate Water (NPIW) layer showed a favorable condition for salt-fingering in the upper NPIW due to the overlying warm/salty water above the cold/fresh NPIW core, and a doubly-stable condition in the lower NPIW where potential temperature decreases with depth while salinity increases, inducing double stratification with respect to both potential temperature and salinity. The present study gives a quantitative estimate of double-diffusive fluxes of salt and heat contributed by salt-fingering in the upper NPIW layer.展开更多
With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific...With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15°-18°N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15°N with lowest salinity off shore at 21°N, but mainly hugs the Mindanao coast south of 12°N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10°N at 130°E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC).展开更多
基于AMS14C测年、有机碳、氮含量及其同位素等指标分析,探讨了冲绳海槽中南部OKT-3孔末次冰消期以来沉积物有机质来源及其对古海洋环境演化的响应。结果显示,OKT-3孔沉积物中有机质主要由中国大陆和中国台湾等陆源有机质,以及海洋自生...基于AMS14C测年、有机碳、氮含量及其同位素等指标分析,探讨了冲绳海槽中南部OKT-3孔末次冰消期以来沉积物有机质来源及其对古海洋环境演化的响应。结果显示,OKT-3孔沉积物中有机质主要由中国大陆和中国台湾等陆源有机质,以及海洋自生有机质组成。末次冰消期至全新世晚期(17.3~4 ka B.P.),中国大陆源有机质贡献逐渐下降,中国台湾源有机质贡献逐渐上升,表明海平面变化、黑潮变动是该阶段有机质来源的主要控制因素。4~1.5 ka期间,陆源有机质供给变化趋势与黑潮变动不一致,表明该时期陆源输入非黑潮单一控制,还可能受季风降雨等变化影响。值得注意的是,OKT-3孔海源有机质贡献在B-A和PB时期高、YD时期低,与北太平洋地区的生产力变化相似,反映了北太平洋中层水(NPIW)对海水表层生产力的控制作用,NPIW是连通冲绳海槽与北太平洋的重要纽带。展开更多
The acoustic Echo Intensity (EI) was recorded with 38k shipborne AcousticDoppler Current Profiler (AD-CP) in the Western Pacific in four cruises between Sept. 2001 and Oct.2002. The main Deep Scattering Layer (DSL) wa...The acoustic Echo Intensity (EI) was recorded with 38k shipborne AcousticDoppler Current Profiler (AD-CP) in the Western Pacific in four cruises between Sept. 2001 and Oct.2002. The main Deep Scattering Layer (DSL) was observed at 400m-600 m depth in the four cruises. Thelatitudinal variation of the main DSL, which has high level of back-scatter strength (BS) at highlatitude, is prominent during both nighttime and daytime. The influences of environmental conditionson the DSL are discussed. Since high-oxygen water in the north is a friendly environment of marineanimals which form the main DSL, more animals are expected to aggregate in the 400dbars-600dbarslayer in the north. Dissolved Oxygen (DO) is the principal factor that causes the main DSL to varywith latitude, and its spatial distributions result from formation and transport of North PacificIntermediate Water (NPIW).展开更多
基金a result of my short visit to the Physical Oceanography Laboratory of Ocean University of ChinaQingdao with support from the Foundation for Open Projects of the Key Lab.of Physical Oceanography,the Ministry of Education,China(No.200401).
文摘Almost half of the oceanic water columns exhibit double-diffusion. The importance of double-diffusion in global oceans’ salt and heat fluxes, water-mass formation and mixing, and circulation is increasingly recognized. However, such an important physical process in the ocean has not been well studied. One of the reasons is the difficulty of parameterizing and quantifying the processes. The paper presented here attempts to quantify the double-diffusive fluxes of salt and heat in the ocean. Previous qualitative analysis by applying the water-mass Turner angle, mTu, to the North Pacific Intermediate Water (NPIW) layer showed a favorable condition for salt-fingering in the upper NPIW due to the overlying warm/salty water above the cold/fresh NPIW core, and a doubly-stable condition in the lower NPIW where potential temperature decreases with depth while salinity increases, inducing double stratification with respect to both potential temperature and salinity. The present study gives a quantitative estimate of double-diffusive fluxes of salt and heat contributed by salt-fingering in the upper NPIW layer.
基金Supported by the National Natural Science Foundation of China (Nos 40890153 and 40576016)
文摘With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15°-18°N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15°N with lowest salinity off shore at 21°N, but mainly hugs the Mindanao coast south of 12°N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10°N at 130°E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC).
文摘基于AMS14C测年、有机碳、氮含量及其同位素等指标分析,探讨了冲绳海槽中南部OKT-3孔末次冰消期以来沉积物有机质来源及其对古海洋环境演化的响应。结果显示,OKT-3孔沉积物中有机质主要由中国大陆和中国台湾等陆源有机质,以及海洋自生有机质组成。末次冰消期至全新世晚期(17.3~4 ka B.P.),中国大陆源有机质贡献逐渐下降,中国台湾源有机质贡献逐渐上升,表明海平面变化、黑潮变动是该阶段有机质来源的主要控制因素。4~1.5 ka期间,陆源有机质供给变化趋势与黑潮变动不一致,表明该时期陆源输入非黑潮单一控制,还可能受季风降雨等变化影响。值得注意的是,OKT-3孔海源有机质贡献在B-A和PB时期高、YD时期低,与北太平洋地区的生产力变化相似,反映了北太平洋中层水(NPIW)对海水表层生产力的控制作用,NPIW是连通冲绳海槽与北太平洋的重要纽带。
文摘The acoustic Echo Intensity (EI) was recorded with 38k shipborne AcousticDoppler Current Profiler (AD-CP) in the Western Pacific in four cruises between Sept. 2001 and Oct.2002. The main Deep Scattering Layer (DSL) was observed at 400m-600 m depth in the four cruises. Thelatitudinal variation of the main DSL, which has high level of back-scatter strength (BS) at highlatitude, is prominent during both nighttime and daytime. The influences of environmental conditionson the DSL are discussed. Since high-oxygen water in the north is a friendly environment of marineanimals which form the main DSL, more animals are expected to aggregate in the 400dbars-600dbarslayer in the north. Dissolved Oxygen (DO) is the principal factor that causes the main DSL to varywith latitude, and its spatial distributions result from formation and transport of North PacificIntermediate Water (NPIW).