Network processing plays an important role in the development of Internet as more and more complicated applications are deployed throughout the network. With the advent of new platforms such as network processors (NPs...Network processing plays an important role in the development of Internet as more and more complicated applications are deployed throughout the network. With the advent of new platforms such as network processors (NPs) that incorporate novel architectures to speedup packet processing, there is an increasing need for an efficient method to facilitate the study of their performance. In this paper, we present a tool called SimNP, which provides a flexible platform for the simulation of a network processing system in order to provide information for workload characterization, architecture development, and application implementation. The simulator models several architectural features that are commonly employed by NPs, including multiple processing engines (PEs), integrated network interface and memory controller, and hardware accelerators. ARM instruction set is emulated and a simple memory model is provided so that applications implemented in high level programming language such as C can be easily compiled into an executable binary using a common compiler like gcc. Moreover, new features or new modules can also be easily added into this simulator. Experiments have shown that our simulator provides abundant information for the study of network processing systems.展开更多
5G,8K视频等新业务类型不断涌现,使得网络处理器(network processor,NP)的应用场景日趋复杂多样.为满足多样化网络应用在性能、灵活性以及服务质量保证等方面的差异化需求,传统NP试图在片上系统(system on chip,SoC)上集成大量处理器核...5G,8K视频等新业务类型不断涌现,使得网络处理器(network processor,NP)的应用场景日趋复杂多样.为满足多样化网络应用在性能、灵活性以及服务质量保证等方面的差异化需求,传统NP试图在片上系统(system on chip,SoC)上集成大量处理器核、高速缓存、加速器等异质处理资源,提供面向多样化应用场景的敏捷可定制能力.然而,随着摩尔定律和登纳德缩放定律失效问题的逐渐凸显,单片NP芯片研制在研发周期、成本、创新迭代等方面面临巨大挑战,越来越难以为继.针对上述问题,提出新型敏捷可定制NP架构ChipletNP,基于芯粒化(Chiplet)技术解耦异质资源,在充分利用成熟芯片产品及工艺的基础上,通过多个芯粒组合,满足不同应用场景下NP的快速定制和演化发展需求.基于ChipletNP设计实现了一款集成商用CPU、FPGA(field programmable gate array)和自研敏捷交换芯粒的银河衡芯敏捷NP芯片(YHHX-NP).基于该芯片的应用部署与实验结果表明,ChipletNP可支持NP的快速敏捷定制,能够有效承载SRv6(segment routing over IPv6)等新型网络协议与网络功能部署.其中,核心的敏捷交换芯粒相较于同级商用芯片能效比提升2倍以上,延迟控制在2.82μs以内,可以有效支持面向NP的Chiplet统一通信与集成.展开更多
文摘Network processing plays an important role in the development of Internet as more and more complicated applications are deployed throughout the network. With the advent of new platforms such as network processors (NPs) that incorporate novel architectures to speedup packet processing, there is an increasing need for an efficient method to facilitate the study of their performance. In this paper, we present a tool called SimNP, which provides a flexible platform for the simulation of a network processing system in order to provide information for workload characterization, architecture development, and application implementation. The simulator models several architectural features that are commonly employed by NPs, including multiple processing engines (PEs), integrated network interface and memory controller, and hardware accelerators. ARM instruction set is emulated and a simple memory model is provided so that applications implemented in high level programming language such as C can be easily compiled into an executable binary using a common compiler like gcc. Moreover, new features or new modules can also be easily added into this simulator. Experiments have shown that our simulator provides abundant information for the study of network processing systems.
文摘5G,8K视频等新业务类型不断涌现,使得网络处理器(network processor,NP)的应用场景日趋复杂多样.为满足多样化网络应用在性能、灵活性以及服务质量保证等方面的差异化需求,传统NP试图在片上系统(system on chip,SoC)上集成大量处理器核、高速缓存、加速器等异质处理资源,提供面向多样化应用场景的敏捷可定制能力.然而,随着摩尔定律和登纳德缩放定律失效问题的逐渐凸显,单片NP芯片研制在研发周期、成本、创新迭代等方面面临巨大挑战,越来越难以为继.针对上述问题,提出新型敏捷可定制NP架构ChipletNP,基于芯粒化(Chiplet)技术解耦异质资源,在充分利用成熟芯片产品及工艺的基础上,通过多个芯粒组合,满足不同应用场景下NP的快速定制和演化发展需求.基于ChipletNP设计实现了一款集成商用CPU、FPGA(field programmable gate array)和自研敏捷交换芯粒的银河衡芯敏捷NP芯片(YHHX-NP).基于该芯片的应用部署与实验结果表明,ChipletNP可支持NP的快速敏捷定制,能够有效承载SRv6(segment routing over IPv6)等新型网络协议与网络功能部署.其中,核心的敏捷交换芯粒相较于同级商用芯片能效比提升2倍以上,延迟控制在2.82μs以内,可以有效支持面向NP的Chiplet统一通信与集成.