Drought across Northwest China in late spring has exerted a vital effect on the local climate and agricultural production,and has been alleviated during the past decades.This study explored the influence of the preced...Drought across Northwest China in late spring has exerted a vital effect on the local climate and agricultural production,and has been alleviated during the past decades.This study explored the influence of the preceding Arctic sea ice on the May drought in Northwest China caused by the precipitation deficit.Further analysis indicated that when the Greenland Sea ice concentration is abnormally high during February to April,the dry conditions in Northwest China tend to be alleviated.The increase of sea ice in the Greenland Sea can excite a meridional circulation,which causes sea surface temperature(SST)anomalies in the North Atlantic via the sea-air interaction,manifested as significant warm SST anomalies over the south of Greenland and the subtropical North Atlantic,but negative SST anomalies over the west of the Azores.This abnormal SST pattern maintains to May and triggers a zonal wave train from the North Atlantic through Scandinavia and Central Asia to Northwest China,leading to abnormal cyclones in Northwest China.Consequently,Northwest China experiences a more humid climate than usual.展开更多
The study investigates the impact of the Syrian crisis and the recent drought on the potable water situation in Northwest Syria, comparing various aspects of water availability and quality before and after 2011. 380 k...The study investigates the impact of the Syrian crisis and the recent drought on the potable water situation in Northwest Syria, comparing various aspects of water availability and quality before and after 2011. 380 key-informants were surveyed, including water-well owners, well-digging companies, water-trucking suppliers, agricultural pharmacies, and service offices within local councils. The surveys covered all nine districts in northwestern Syria across the Aleppo and the Idleb governorates. The survey findings reveal significant shifts in water sources, an almost halving in water availability and per capita consumption, and a notable decrease in water quality. Coping mechanisms include random well drilling and reduced hygiene practices. Water pumping stations face challenges with functionality, and there is a shift towards clean energy sources, particularly solar energy. Challenges identified by the survey respondents include drought, fuel costs, and damaged water networks. The study highlights the urgency of addressing the potable water crisis in Northwest Syria and suggests specific interventions to enhance water sustainability and governance.展开更多
To explore the geochemical characteristics and genesis of the elements in ferromanganese nodules from the Northwest Pacific,this study analyses the mineral composition,elemental content,occurrence phase and genetic me...To explore the geochemical characteristics and genesis of the elements in ferromanganese nodules from the Northwest Pacific,this study analyses the mineral composition,elemental content,occurrence phase and genetic mechanisms of samples by X-ray diffraction(XRD),inductively coupled plasma-optical emission spectrometry(ICP-OES),inductively coupled plasma-mass spectrometry(ICP-MS)and phase analysis methods.The results show that ferromanganese nodules are mainly hydrogenetic,and Mn/Fe content ratio ranges from 0.95 to 2.05.The major minerals are vernadite(δ-MnO_(2))and amorphous ferric oxyhydroxide(FeOOH),and the secondary minerals include todorokite,birnessite,quartz and plagioclase.Ferromanganese nodules contain high contents of Co(0.24%-0.42%),Cu(0.23%-0.73%),Ni(0.33%-0.86%)and rare earth elements(REEs,1192-1990μg/g),which have positive Ce and negative Y anomalies but no Eu anomaly.A cluster analysis suggests that the elements in ferromanganese nodules can be divided into three groups:hydrogenetic components,including Fe,Ti,Zr,P,Pb,Co,Ba,Sr,V and REEs;diagenetic components,including Mn,Ni,Mg,Zn and Cu;and detrital components,including Al,Na,K and Ca.According to chemical leaching,ferromanganese nodules can be divided into four phases:Na,Ca,Mg and Sr are mainly enriched in the carbonate phase;Mn,Co,Ni and Ba are mainly enriched in the Mn-oxide phase;Fe,P,Ti,Cu,Pb,V,Zn,Zr and REEs are mainly enriched in the Fe-oxide phase;and Al and K are mainly enriched in the residual phase.A combination of the two different methods reveal selective enrichment of metal elements from seawater by ferromanganese nodules,featuring multisource mineralization.Moreover,through ion exchange and adsorption,approximately 71.2%of REEs are enriched in the Fe-oxide phase,15.4%in the Mn-oxide phase and 12.4%in the residual phase,while REE contents in the carbonate phase are relatively low.In addition,under the oxic conditions of seawater,the oxidation of soluble Ce^(3+)to insoluble CeO_(2)together with Fe-Mn minerals results in Ce enrichment in ferromanganese nodules.This study provides a reference for the metallogenesis of ferromanganese nodules from the Northwest Pacific.展开更多
Agricultural trade promotes the transfer of water resources,which has an impact on regional water scarcity,particularly in arid regions.Nevertheless,the understanding of how agricultural trade influences water scarcit...Agricultural trade promotes the transfer of water resources,which has an impact on regional water scarcity,particularly in arid regions.Nevertheless,the understanding of how agricultural trade influences water scarcity and the populations under different water scarcity levels is still insufficient.This study examines the impact of domestic agricultural(food crop)trade on water scarcity in Northwest China by integrating a grid-based dynamic water balance model with a linear programming model.The results indicate that the agricultural blue water(surface and groundwater)footprint and green water(soil water)footprint in the Northwest region peaked in 2014,with the green water footprint being 17%higher than the blue water footprint.The increase in trade volume has effectively alleviated water scarcity in Northwest China,with green water playing a greater role than blue water,especially in Shaanxi and Ningxia.As trade volumes rise,the population facing mild water scarcity continues to grow after trade,with increases of 4.56%,6.70%,and 5.36%in 2000,2010 and 2014.Agricultural trade significantly alleviates the pressure of severe water scarcity and boosts the region's population carrying capacity.This study provides scientific evidence to support stronger coordination of water resources between regions,especially agricultural water trade between water-rich and water-scarce areas,and to inform the formulation of rational allocation policies for balancing regional water resource distribution and benefits.展开更多
As a type of clean and pollution-free energy source,solar energy plays an important role in achieving the goals of carbon neutrality and global sustainable development.Northwest China occupies an important position in...As a type of clean and pollution-free energy source,solar energy plays an important role in achieving the goals of carbon neutrality and global sustainable development.Northwest China occupies an important position in the national energy strategy due to its rich solar energy.Clarifying the long-term variations of Northwest China’s solar energy and understanding the associated mechanisms are crucial to improving the layout of new energy sources and the usage efficiency of solar energy within China.In this study,the authors first divide Northwest China into northwestern and southeastern sections by conducting a rotated empirical orthogonal function analysis on the surface solar radiation(SSR)from 1993 to 2022,and then explore the SSR’s variation trends and associated mechanisms within these subregions.It is found that the two subregions,both of which show a significant feature of decadal change,differ notably in their long-term trends:the northwestern section shows a significant increasing trend of∼8.1 kJ m^(-2)yr^(-1)in the annual mean SSR,and in each season the SSR increases significantly,with a maximum/minimum increasing rate of∼11.2/∼4.6 kJm^(-2)yr^(-1)appearing in summer/autumn.A possible mechanism for the SSR’s increasing trend is that global warming results in a lower relative humidity within the northwestern section,which decreases the total cloud cover,as it is harder for the atmosphere to reach saturation state.A decreasing total cloud cover results in an increasing SSR within the northwestern section.In contrast,the southeastern section shows no significant trend in annual mean SSR,as the SSRs in summer and autumn show significant decreasing trends,whereas the trends in spring and winter are not significant.展开更多
Generally speaking,the precursors of ozone(O_(3)),nitrogen oxides and volatile organic compounds are very low in desert areas due to the lack of anthropogenic emissions and natural emissions,and thus O_(3)concentratio...Generally speaking,the precursors of ozone(O_(3)),nitrogen oxides and volatile organic compounds are very low in desert areas due to the lack of anthropogenic emissions and natural emissions,and thus O_(3)concentrations are relatively low.However,high summer background concentrations of about 100μg/m^(3)or 60 ppb were found in the Alxa Desert in the highland of northwest China based on continuous summer observations from 2019 to 2021,which was higher than the most of natural background areas or clean areas in world for summer O_(3)background concentrations.The high O_(3)background concentrations were related to surface features and altitude.Heavy-intensity anthropogenic activity areas in desert areas can cause increased O_(3)concentrations or pollution,but also generated O_(3)depleting substances such as nitrous oxide,which eventually reduced the regional O_(3)baseline values.Nitrogen dioxide(NO2)also had a dual effect on O_(3)generation,showing promotion at low concentrations and inhibition at high concentrations.In addition,sand-dust weather reduced O_(3)clearly,but O_(3)eventually stabilized around the background concentration values and did not vary with sand-dust particulate matter.展开更多
Addressing global warming,a common change today,requires achieving peak carbon dioxide emissions and carbon neutrality(also referred to as the dual carbon goals).Enhancing research on the carbon cycle is urgently need...Addressing global warming,a common change today,requires achieving peak carbon dioxide emissions and carbon neutrality(also referred to as the dual carbon goals).Enhancing research on the carbon cycle is urgently needed as the foundation.Water,a key carrier in the carbon cycle,necessitates investigation into groundwater carbon pools’contribution to atmospheric carbon sinks.This study assessed carbon stocks in the Yinchuan Basin’s soil and groundwater carbon pools.Findings indicate the basin’s surface soils contain approximately 24.16 Tg of organic carbon and a total of 60.01 Tg of carbon.In contrast,the basin’s groundwater holds around 4.90 Tg of carbon,roughly one-fifth of the organic carbon in surface soils.Thus,groundwater and soil carbon pools possess comparable carbon stocks,underscoring the importance of the groundwater carbon pool.Studies on terrestrial carbon balance should incorporate groundwater carbon pools,which deserve increased focus.Evaluating groundwater carbon pools’contributions is vital for achieving the dual carbon goals.展开更多
[Objective] The paper aimed to evaluate the plain forestry' service function in Northwest China.[Method] Based on general and representative investigations with county used as the minimum unit,evaluation on service f...[Objective] The paper aimed to evaluate the plain forestry' service function in Northwest China.[Method] Based on general and representative investigations with county used as the minimum unit,evaluation on service function of plain forestry ecosystem in Northwest China was carried out by measuring the quality and quantity.[Result] In 2005,the plain forestry in Northwest China plays a profound role in water and soil conversation,carbon sequestration by vegetation and soil,oxygen release by plants,sulfur dioxide absorption and and so on.[Conclusion] This paper laid foundation for research on service function of plain forest ecosystem in Northwest China.展开更多
Based on the state of characteristics of dry warming of modern climate changing,the response of growth,output and quality of main economic crops such as cotton,flax and winter rape and characteristic crop such as vini...Based on the state of characteristics of dry warming of modern climate changing,the response of growth,output and quality of main economic crops such as cotton,flax and winter rape and characteristic crop such as vinifera and apple were discussed.The coping technology for climate changing and measurements for serving the agricultural were provided.展开更多
The temperature and salinity distributions, and the water mass structures in Northwest Pacific Ocean are studied using the temperature and salinity data obtained by Argo profiling floats. The T-S relation in this regi...The temperature and salinity distributions, and the water mass structures in Northwest Pacific Ocean are studied using the temperature and salinity data obtained by Argo profiling floats. The T-S relation in this region indicates there exist 8 water masses, they are the North Pacific Tropical Surface Water (NPTSW), North P, acific Subsurface Water (NPSSW), North Pacific Intermediate Water (NPIW), North Pacific Subtropical Water (NPSTW), North Pacific Deep Water (NPDW) and Equatorial Surface Water (ESW), and the South Pacific Subsurface Water (SPSSW) and South Pacific Intermediate Water (SPIW).展开更多
Objective] This study was conducted to evaluate the product quality and safety of Peristrophe roxburghiana_ col ected from different places in Hechi City, northwest of Gunagxi, so as to provide basic data for further ...Objective] This study was conducted to evaluate the product quality and safety of Peristrophe roxburghiana_ col ected from different places in Hechi City, northwest of Gunagxi, so as to provide basic data for further development and uti-lization of the characteristic plant resource P. roxburghiana. [Method] Contents of 9 kinds of heavy metals including Cd, Mn, Pb, Zn and Cu in the herb were deter-mined by the method of wet digestion-flame atomic absorption spectrophotometry and atomic fluorescence spectrometry, respectively. [Results] Heavy metal contents of Cd, Mn, Pb, Fe, Cu, Zn, As, Hg and Se were 1.62-17.25, 8.93-142.53, 4.37-18.43, 103.7-242.81, 2.55-5.35, 85.40-146.30, 0.07-0.54, 0.00-0.08 and 0.00-0.47 mg/kg, respectively. According to the national food safety standards and Green Trade Standards of lmporting & Exporting Medicinal plants & Preparations, the heavy metal contents of the P. roxburghiana_samples col ected from different coun-ties in Hechi City exceeded standards or at the critical values. Among which, Cd, Pb and Zn contents of the samples are seriously higher than the standards. [Con-clusion] Therefore, the impact of soil heavy metal pol ution on the safety of edible plants in the northwest of Guangxi should be highly concerned.展开更多
Eighty-one species of fossil spores and pollen assigned to 52 genera are found from the Middle Jurassic Xishanyao, Sanjianfang and Qiketai Formations of boreholes Le 1, Mi 1, Shan 1 and Dun 1 in the northern Turpan De...Eighty-one species of fossil spores and pollen assigned to 52 genera are found from the Middle Jurassic Xishanyao, Sanjianfang and Qiketai Formations of boreholes Le 1, Mi 1, Shan 1 and Dun 1 in the northern Turpan Depression, Xinjiang, northwest China. Three assemblages have been proposed as: Cyathidites-Psophosphaera-Cycadopites assemblage, Cyathidites-Quadraceculina-Classopollis assemblage and Cyathidites-Callialasporites-Classopollis assemblage obtained from the Xishanyao Formation, the Sanjianfang Formation and Qiketai Formation respectively. Based on the sporo-pollen assemblage features and con-elation, their geological ages are regarded as of Middle Jurassic, probably Aalenian to Bathonian. The results of the study indicate that the vegetation of early Middle Jurassic in this region consisted mainly of Gymnospermae of Ginkgoaceae of Cycadales, Podocarpaceae, Pinaceae and Pteridophyta of Cyatheacene, Osmundaceae, Lycopodiaceae and Dicksoniaceae, etc. They reflect a warm-moist subtropic climate. To the middle-late Middle Jurassic, Cheirolepidaceae was dominant in the vegetation, which indicates that the climate was in the trend of becoming dry.展开更多
Based on the Had ISST1 and NCEP datasets,we investigated the influences of the central Pacific El Ni?o event(CP-EL)and eastern Pacific El Ni?o event(EP-EL)on the Sea Surface Temperature(SST)anomalies of the Tropical I...Based on the Had ISST1 and NCEP datasets,we investigated the influences of the central Pacific El Ni?o event(CP-EL)and eastern Pacific El Ni?o event(EP-EL)on the Sea Surface Temperature(SST)anomalies of the Tropical Indian Ocean.Considering the remote ef fect of Indian Ocean warming,we also discussed the anticyclone anomalies over the Northwest Pacific,which is very important for the South China precipitation and East Asian climate.Results show that during the El Ni?o developing year of EP-EL,cold SST anomalies appear and intensify in the east of tropical Indian Ocean.At the end of that autumn,all the cold SST anomaly events lead to the Indian Ocean Dipole(IOD)events.Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs.However,considering the statistical significance,more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year.For further research,EP-EL accompany with Indian Ocean Basin Warming(EPI-EL)and CP El Ni?o accompany with Indian Ocean Basin Warming(CPI-EL)events are classified.With the remote ef fects of Indian Ocean SST anomalies,the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific.For the EPI-EL developing year,large-scale warm SST anomalies arise in the North Indian Ocean in May,and persist to the autumn of the El Ni?o decaying year.However,for the CPI-EL,weak warm SST anomalies in the North Indian Ocean maintain to the El Ni?o decaying spring.Because of these different SST anomalies in the North Indian Ocean,distinct zonal SST gradient,atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Ni?o decaying years.Specifically,the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years,can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean.The atmospheric heating caused by this precipitation anomaly emulates atmospheric Kelvin waves accompanied by low level easterly anomalies over the Northwest Pacific.As a result,a zonal SST gradient with a warm anomaly in the west and a cold anomaly in the east of Northwest Pacific is generated locally.Furthermore,the atmospheric anticyclone and precipitation anomalies over the Northwest Pacific are strengthened again in the decaying summer of EPI-EL.Af fected by the local WindEvaporation-SST(WES)positive feedback,the suppressed East Asian summer rainfall then persists to the late autumn during EPI-EL decaying year,which is much longer than that of CPI-EL.展开更多
Through summarizing the research status of emergy analysis at home and abroad,the basic connotation and judgment standard of emergy and indices were introduced in detail. Considering the characteristics of emergy anal...Through summarizing the research status of emergy analysis at home and abroad,the basic connotation and judgment standard of emergy and indices were introduced in detail. Considering the characteristics of emergy analysis applied to the specific geographic scope in arid region in Northwest China,the problems which should be paid attention to and the corresponding suggestions as well as counter measures were put forward. Finally,trends in the further study of emergy analysis were forecasted.展开更多
As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in ...As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in externally agricultural non-point source pollution is considered as the biggest barrier for controlling external pollution.In this research,the Jian lake plateau Zizania latifolia wetland lakefront zone was selected for agricultural non-point source pollutions control with the systematic field research,and the lakefront zone was approved to have an effective purification effect on nitrogen and phosphorus from Jinlong River; the theoretical mechanism of lakefront zone removing nutrient was also investigated.Z.latifolia wetland lakefront zone could remove nitrogen and phosphorus from Jinlong River and the removal ratio can reach 55.8-62.52% and 59.47-69.81% respectively.So,we can indicate that the Jian Lake plateau Z.latifolia wetland lakefront zone had a good effect on controlling agricultural non-point source pollution and protecting the environment.展开更多
The system planning of the Northwest China 330 kV Power System from present to the year 2000 is introduced in this paper. Some technical problems arising from the system planning, such as network configuration, system...The system planning of the Northwest China 330 kV Power System from present to the year 2000 is introduced in this paper. Some technical problems arising from the system planning, such as network configuration, system stability and reactive power compensation etc. are also briefly summarized.展开更多
Deterministic, probabilistic and composite-grading methods are used to get the possible locations of strong earth-quakes in the future in Norwest Beijing and its vicinity based on the quantitative data and their accur...Deterministic, probabilistic and composite-grading methods are used to get the possible locations of strong earth-quakes in the future in Norwest Beijing and its vicinity based on the quantitative data and their accuracy about active tectonics in the research area and by ordering, some questions in the results are also discussed. It shows that the most dangerous fault segments for strong earthquakes in the future include: segments B and A of the southern boundary fault of the Yangyuan basin, the southern boundary fault of the Xuanhua basin, the east segment of the southern Huaian fault and the east segment of the northern YanggaoTianzhen fault. The most dangerous area is YangyuanShenjing basin, the second one is TianzhenHuaianXuanhua basin and the third dangerous areas are WanquanZhangjiakou and northeast of Yuxian to southwest of Fanshan.展开更多
Climate change and water resource issues are global problems of common concern to the international community, and they are major bottlenecks affecting the eco-environment and sustainable socio-economic development in...Climate change and water resource issues are global problems of common concern to the international community, and they are major bottlenecks affecting the eco-environment and sustainable socio-economic development in the arid region of Northwest China. On the basis of results from previous studies, this paper points out that the unique landscape of Northwest China increases the complexity and uncertainty of the climate system. This paper analyzes the key constraints on socio-economic development and ecological security in the region, discusses the impact of climate change on water resources in Northwest China, identifies common themes and the main problems present in research on climate change and water resources in the arid northwest region, and finally, based on the importance and urgency of conducting research on the region's water resources, proposes scientific problems that need to be addressed: first, the impact of climate change on the formation, conversion and future trends of water resources in the region; second, bidirectional coupling of high-resolution regional climate models and water cycle models of arid region land surface patterns; third, the impact of climate change and human activities on water resources of the arid northwest region. Through consideration and discussion of the above, this paper seeks to further clarify specific areas of research on pressing issues related to climate change and water resources in Northwest China, so as to establish a solid scientific basis for significantly enhancing our ability to respond to climate change and water shortages.展开更多
The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oa...The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oasis ecosystem. This paper summarizes the hydrological processes and water cycle of inland river basins in the ARNC, focusing on the following aspects: the spatial-temporal features of water resources(including air water vapor resources, runoff, and glacial meltwater) and their driving forces; the characteristics of streamflow composition in the inland river basins; the characteristics and main controlling factors of baseflow in the inland rivers; and anticipated future changes in hydrological processes and water resources. The results indicate that:(1) although the runoff in most inland rivers in the ARNC showed a significant increasing trend, both the glaciated area and glacial ice reserves have been reduced in the mountains;(2) snow melt and glacier melt are extremely important hydrological processes in the ARNC, especially in the Kunlun and Tianshan mountains;(3) baseflow in the inland rivers of the ARNC is the result of climate change and human activities, with the main driving factors being the reduction in forest area and the over-exploitation and utilization of groundwater in the river basins; and(4) the contradictions among water resources, ecology and economy will further increase in the future. The findings of this study might also help strengthen the ecological, economic and social sustainable development in the study region.展开更多
基金supported by the National Natural Science Foun-dation of China [grant numbers 41991281 and 42005028]。
文摘Drought across Northwest China in late spring has exerted a vital effect on the local climate and agricultural production,and has been alleviated during the past decades.This study explored the influence of the preceding Arctic sea ice on the May drought in Northwest China caused by the precipitation deficit.Further analysis indicated that when the Greenland Sea ice concentration is abnormally high during February to April,the dry conditions in Northwest China tend to be alleviated.The increase of sea ice in the Greenland Sea can excite a meridional circulation,which causes sea surface temperature(SST)anomalies in the North Atlantic via the sea-air interaction,manifested as significant warm SST anomalies over the south of Greenland and the subtropical North Atlantic,but negative SST anomalies over the west of the Azores.This abnormal SST pattern maintains to May and triggers a zonal wave train from the North Atlantic through Scandinavia and Central Asia to Northwest China,leading to abnormal cyclones in Northwest China.Consequently,Northwest China experiences a more humid climate than usual.
文摘The study investigates the impact of the Syrian crisis and the recent drought on the potable water situation in Northwest Syria, comparing various aspects of water availability and quality before and after 2011. 380 key-informants were surveyed, including water-well owners, well-digging companies, water-trucking suppliers, agricultural pharmacies, and service offices within local councils. The surveys covered all nine districts in northwestern Syria across the Aleppo and the Idleb governorates. The survey findings reveal significant shifts in water sources, an almost halving in water availability and per capita consumption, and a notable decrease in water quality. Coping mechanisms include random well drilling and reduced hygiene practices. Water pumping stations face challenges with functionality, and there is a shift towards clean energy sources, particularly solar energy. Challenges identified by the survey respondents include drought, fuel costs, and damaged water networks. The study highlights the urgency of addressing the potable water crisis in Northwest Syria and suggests specific interventions to enhance water sustainability and governance.
基金The Fund of Laoshan Laboratory under contract No.LSKJ202203602the National key R&D Program of China under contract No.2022YFC2803600the Taishan Scholarship from Shandong Province.
文摘To explore the geochemical characteristics and genesis of the elements in ferromanganese nodules from the Northwest Pacific,this study analyses the mineral composition,elemental content,occurrence phase and genetic mechanisms of samples by X-ray diffraction(XRD),inductively coupled plasma-optical emission spectrometry(ICP-OES),inductively coupled plasma-mass spectrometry(ICP-MS)and phase analysis methods.The results show that ferromanganese nodules are mainly hydrogenetic,and Mn/Fe content ratio ranges from 0.95 to 2.05.The major minerals are vernadite(δ-MnO_(2))and amorphous ferric oxyhydroxide(FeOOH),and the secondary minerals include todorokite,birnessite,quartz and plagioclase.Ferromanganese nodules contain high contents of Co(0.24%-0.42%),Cu(0.23%-0.73%),Ni(0.33%-0.86%)and rare earth elements(REEs,1192-1990μg/g),which have positive Ce and negative Y anomalies but no Eu anomaly.A cluster analysis suggests that the elements in ferromanganese nodules can be divided into three groups:hydrogenetic components,including Fe,Ti,Zr,P,Pb,Co,Ba,Sr,V and REEs;diagenetic components,including Mn,Ni,Mg,Zn and Cu;and detrital components,including Al,Na,K and Ca.According to chemical leaching,ferromanganese nodules can be divided into four phases:Na,Ca,Mg and Sr are mainly enriched in the carbonate phase;Mn,Co,Ni and Ba are mainly enriched in the Mn-oxide phase;Fe,P,Ti,Cu,Pb,V,Zn,Zr and REEs are mainly enriched in the Fe-oxide phase;and Al and K are mainly enriched in the residual phase.A combination of the two different methods reveal selective enrichment of metal elements from seawater by ferromanganese nodules,featuring multisource mineralization.Moreover,through ion exchange and adsorption,approximately 71.2%of REEs are enriched in the Fe-oxide phase,15.4%in the Mn-oxide phase and 12.4%in the residual phase,while REE contents in the carbonate phase are relatively low.In addition,under the oxic conditions of seawater,the oxidation of soluble Ce^(3+)to insoluble CeO_(2)together with Fe-Mn minerals results in Ce enrichment in ferromanganese nodules.This study provides a reference for the metallogenesis of ferromanganese nodules from the Northwest Pacific.
基金supported by the Tianshan Talents Program of Xinjiang Uygur Autonomous Region(2022TSYCJU0002)the Basic and cross-cutting frontier scientific research pilot projects of Chinese Academy of Sciences(XDB0720100)+3 种基金the Major Science and Technology Special Project of Xinjiang Uygur Autonomous Region-Research and demonstration of nature-based restoration and conservation technology for degraded vegetation in the desert-oasis ecotone(2024A03009-4)the original innovation project of the basic frontier scientific research program,Chinese Academy of Sciences(ZDBS-LY-DQC031)the water system evolution and risk assessment in arid regions for original innovation project of institute(2023-2025)the Outstanding Member of the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019)(2024-2026).
文摘Agricultural trade promotes the transfer of water resources,which has an impact on regional water scarcity,particularly in arid regions.Nevertheless,the understanding of how agricultural trade influences water scarcity and the populations under different water scarcity levels is still insufficient.This study examines the impact of domestic agricultural(food crop)trade on water scarcity in Northwest China by integrating a grid-based dynamic water balance model with a linear programming model.The results indicate that the agricultural blue water(surface and groundwater)footprint and green water(soil water)footprint in the Northwest region peaked in 2014,with the green water footprint being 17%higher than the blue water footprint.The increase in trade volume has effectively alleviated water scarcity in Northwest China,with green water playing a greater role than blue water,especially in Shaanxi and Ningxia.As trade volumes rise,the population facing mild water scarcity continues to grow after trade,with increases of 4.56%,6.70%,and 5.36%in 2000,2010 and 2014.Agricultural trade significantly alleviates the pressure of severe water scarcity and boosts the region's population carrying capacity.This study provides scientific evidence to support stronger coordination of water resources between regions,especially agricultural water trade between water-rich and water-scarce areas,and to inform the formulation of rational allocation policies for balancing regional water resource distribution and benefits.
基金supported by the National Key R&D Program of China[grant number 2022YFB2403002]。
文摘As a type of clean and pollution-free energy source,solar energy plays an important role in achieving the goals of carbon neutrality and global sustainable development.Northwest China occupies an important position in the national energy strategy due to its rich solar energy.Clarifying the long-term variations of Northwest China’s solar energy and understanding the associated mechanisms are crucial to improving the layout of new energy sources and the usage efficiency of solar energy within China.In this study,the authors first divide Northwest China into northwestern and southeastern sections by conducting a rotated empirical orthogonal function analysis on the surface solar radiation(SSR)from 1993 to 2022,and then explore the SSR’s variation trends and associated mechanisms within these subregions.It is found that the two subregions,both of which show a significant feature of decadal change,differ notably in their long-term trends:the northwestern section shows a significant increasing trend of∼8.1 kJ m^(-2)yr^(-1)in the annual mean SSR,and in each season the SSR increases significantly,with a maximum/minimum increasing rate of∼11.2/∼4.6 kJm^(-2)yr^(-1)appearing in summer/autumn.A possible mechanism for the SSR’s increasing trend is that global warming results in a lower relative humidity within the northwestern section,which decreases the total cloud cover,as it is harder for the atmosphere to reach saturation state.A decreasing total cloud cover results in an increasing SSR within the northwestern section.In contrast,the southeastern section shows no significant trend in annual mean SSR,as the SSRs in summer and autumn show significant decreasing trends,whereas the trends in spring and winter are not significant.
基金supported by the Ministry of Science and Technology of China(No.2022YFF0802501)Inner Mongolia Autonomous Region Science and Technology Program(Nos.2021GG0100 and 2022YFHH0116).
文摘Generally speaking,the precursors of ozone(O_(3)),nitrogen oxides and volatile organic compounds are very low in desert areas due to the lack of anthropogenic emissions and natural emissions,and thus O_(3)concentrations are relatively low.However,high summer background concentrations of about 100μg/m^(3)or 60 ppb were found in the Alxa Desert in the highland of northwest China based on continuous summer observations from 2019 to 2021,which was higher than the most of natural background areas or clean areas in world for summer O_(3)background concentrations.The high O_(3)background concentrations were related to surface features and altitude.Heavy-intensity anthropogenic activity areas in desert areas can cause increased O_(3)concentrations or pollution,but also generated O_(3)depleting substances such as nitrous oxide,which eventually reduced the regional O_(3)baseline values.Nitrogen dioxide(NO2)also had a dual effect on O_(3)generation,showing promotion at low concentrations and inhibition at high concentrations.In addition,sand-dust weather reduced O_(3)clearly,but O_(3)eventually stabilized around the background concentration values and did not vary with sand-dust particulate matter.
基金supported by the third scientific survey project in Xinjiang(2022xjkk0300)the public welfare geological survey projects initiated by the China Geological Survey(DD20190296,DD20221731).
文摘Addressing global warming,a common change today,requires achieving peak carbon dioxide emissions and carbon neutrality(also referred to as the dual carbon goals).Enhancing research on the carbon cycle is urgently needed as the foundation.Water,a key carrier in the carbon cycle,necessitates investigation into groundwater carbon pools’contribution to atmospheric carbon sinks.This study assessed carbon stocks in the Yinchuan Basin’s soil and groundwater carbon pools.Findings indicate the basin’s surface soils contain approximately 24.16 Tg of organic carbon and a total of 60.01 Tg of carbon.In contrast,the basin’s groundwater holds around 4.90 Tg of carbon,roughly one-fifth of the organic carbon in surface soils.Thus,groundwater and soil carbon pools possess comparable carbon stocks,underscoring the importance of the groundwater carbon pool.Studies on terrestrial carbon balance should incorporate groundwater carbon pools,which deserve increased focus.Evaluating groundwater carbon pools’contributions is vital for achieving the dual carbon goals.
文摘[Objective] The paper aimed to evaluate the plain forestry' service function in Northwest China.[Method] Based on general and representative investigations with county used as the minimum unit,evaluation on service function of plain forestry ecosystem in Northwest China was carried out by measuring the quality and quantity.[Result] In 2005,the plain forestry in Northwest China plays a profound role in water and soil conversation,carbon sequestration by vegetation and soil,oxygen release by plants,sulfur dioxide absorption and and so on.[Conclusion] This paper laid foundation for research on service function of plain forest ecosystem in Northwest China.
基金Supported by Special Fund of Public Industry from Ministry of Science and Technology (GYHY200806021)National Natural Science Foundation Emphases Item of China (40830957)+2 种基金Project of Researches on Drought Meteorological Science (IAM200811)Special Fund for Climatic Change in China Meteorological Bureau (CCSS-09-14)Technology-aid Project in Gansu (090NKCA118)~~
文摘Based on the state of characteristics of dry warming of modern climate changing,the response of growth,output and quality of main economic crops such as cotton,flax and winter rape and characteristic crop such as vinifera and apple were discussed.The coping technology for climate changing and measurements for serving the agricultural were provided.
基金the specical scientific research project for the welfare of the State Oceanic Administration for 2007.(No.200706022).
文摘The temperature and salinity distributions, and the water mass structures in Northwest Pacific Ocean are studied using the temperature and salinity data obtained by Argo profiling floats. The T-S relation in this region indicates there exist 8 water masses, they are the North Pacific Tropical Surface Water (NPTSW), North P, acific Subsurface Water (NPSSW), North Pacific Intermediate Water (NPIW), North Pacific Subtropical Water (NPSTW), North Pacific Deep Water (NPDW) and Equatorial Surface Water (ESW), and the South Pacific Subsurface Water (SPSSW) and South Pacific Intermediate Water (SPIW).
基金Supported by Fund for Key Laboratories in Guangxi Universities-Featured Resource Research and Development Laboratory of Northwest of Guangxi(GJKY 2010[6])Fund for Platform Built by University and Local Government or University and EnterpriseLocal Resource Protection and Utilization Engineering Center of Northwest of Guangxi(GJKY 2010[9])~~
文摘Objective] This study was conducted to evaluate the product quality and safety of Peristrophe roxburghiana_ col ected from different places in Hechi City, northwest of Gunagxi, so as to provide basic data for further development and uti-lization of the characteristic plant resource P. roxburghiana. [Method] Contents of 9 kinds of heavy metals including Cd, Mn, Pb, Zn and Cu in the herb were deter-mined by the method of wet digestion-flame atomic absorption spectrophotometry and atomic fluorescence spectrometry, respectively. [Results] Heavy metal contents of Cd, Mn, Pb, Fe, Cu, Zn, As, Hg and Se were 1.62-17.25, 8.93-142.53, 4.37-18.43, 103.7-242.81, 2.55-5.35, 85.40-146.30, 0.07-0.54, 0.00-0.08 and 0.00-0.47 mg/kg, respectively. According to the national food safety standards and Green Trade Standards of lmporting & Exporting Medicinal plants & Preparations, the heavy metal contents of the P. roxburghiana_samples col ected from different coun-ties in Hechi City exceeded standards or at the critical values. Among which, Cd, Pb and Zn contents of the samples are seriously higher than the standards. [Con-clusion] Therefore, the impact of soil heavy metal pol ution on the safety of edible plants in the northwest of Guangxi should be highly concerned.
文摘Eighty-one species of fossil spores and pollen assigned to 52 genera are found from the Middle Jurassic Xishanyao, Sanjianfang and Qiketai Formations of boreholes Le 1, Mi 1, Shan 1 and Dun 1 in the northern Turpan Depression, Xinjiang, northwest China. Three assemblages have been proposed as: Cyathidites-Psophosphaera-Cycadopites assemblage, Cyathidites-Quadraceculina-Classopollis assemblage and Cyathidites-Callialasporites-Classopollis assemblage obtained from the Xishanyao Formation, the Sanjianfang Formation and Qiketai Formation respectively. Based on the sporo-pollen assemblage features and con-elation, their geological ages are regarded as of Middle Jurassic, probably Aalenian to Bathonian. The results of the study indicate that the vegetation of early Middle Jurassic in this region consisted mainly of Gymnospermae of Ginkgoaceae of Cycadales, Podocarpaceae, Pinaceae and Pteridophyta of Cyatheacene, Osmundaceae, Lycopodiaceae and Dicksoniaceae, etc. They reflect a warm-moist subtropic climate. To the middle-late Middle Jurassic, Cheirolepidaceae was dominant in the vegetation, which indicates that the climate was in the trend of becoming dry.
基金Supported by the National Key Program for Developing Basic Science of China(Nos.2012CB956002,2016YFA0600303)the National Natural Science Foundation of China(Nos.41675064,41621005,41330420,41275068)+1 种基金the Jiangsu Province Science Foundation(No.SBK2015020577)the Jiangsu Collaborative Innovation Center of Climate Change and Key Laboratory Project Foundation(No.KLME1501)
文摘Based on the Had ISST1 and NCEP datasets,we investigated the influences of the central Pacific El Ni?o event(CP-EL)and eastern Pacific El Ni?o event(EP-EL)on the Sea Surface Temperature(SST)anomalies of the Tropical Indian Ocean.Considering the remote ef fect of Indian Ocean warming,we also discussed the anticyclone anomalies over the Northwest Pacific,which is very important for the South China precipitation and East Asian climate.Results show that during the El Ni?o developing year of EP-EL,cold SST anomalies appear and intensify in the east of tropical Indian Ocean.At the end of that autumn,all the cold SST anomaly events lead to the Indian Ocean Dipole(IOD)events.Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs.However,considering the statistical significance,more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year.For further research,EP-EL accompany with Indian Ocean Basin Warming(EPI-EL)and CP El Ni?o accompany with Indian Ocean Basin Warming(CPI-EL)events are classified.With the remote ef fects of Indian Ocean SST anomalies,the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific.For the EPI-EL developing year,large-scale warm SST anomalies arise in the North Indian Ocean in May,and persist to the autumn of the El Ni?o decaying year.However,for the CPI-EL,weak warm SST anomalies in the North Indian Ocean maintain to the El Ni?o decaying spring.Because of these different SST anomalies in the North Indian Ocean,distinct zonal SST gradient,atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Ni?o decaying years.Specifically,the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years,can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean.The atmospheric heating caused by this precipitation anomaly emulates atmospheric Kelvin waves accompanied by low level easterly anomalies over the Northwest Pacific.As a result,a zonal SST gradient with a warm anomaly in the west and a cold anomaly in the east of Northwest Pacific is generated locally.Furthermore,the atmospheric anticyclone and precipitation anomalies over the Northwest Pacific are strengthened again in the decaying summer of EPI-EL.Af fected by the local WindEvaporation-SST(WES)positive feedback,the suppressed East Asian summer rainfall then persists to the late autumn during EPI-EL decaying year,which is much longer than that of CPI-EL.
基金Supported by Key Technologies R&D Program from Ministry of Science and Technology of the People's Republic of China (2007BAD46B08)Program for Fostering Special Talents of Glaciology and Cryopedology of the National Basic Sciences Talents Fundation(J0630966)+1 种基金Key Technologies R&D Program of Gansu Province(090NKCA075)Natural Science Fundation of Gansu Province (3ZS041-A25-002)
文摘Through summarizing the research status of emergy analysis at home and abroad,the basic connotation and judgment standard of emergy and indices were introduced in detail. Considering the characteristics of emergy analysis applied to the specific geographic scope in arid region in Northwest China,the problems which should be paid attention to and the corresponding suggestions as well as counter measures were put forward. Finally,trends in the further study of emergy analysis were forecasted.
基金Supported by National Key Basic Research Development Plan(973) Early Special Item(2008CB41720)Yunnan Application Basic Research Apparent Project (2009ZC083M)+1 种基金Yunnan Technological Plan Project (2008CA006)Apparent Fund Project of South West Forestry University (200804M)~~
文摘As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in externally agricultural non-point source pollution is considered as the biggest barrier for controlling external pollution.In this research,the Jian lake plateau Zizania latifolia wetland lakefront zone was selected for agricultural non-point source pollutions control with the systematic field research,and the lakefront zone was approved to have an effective purification effect on nitrogen and phosphorus from Jinlong River; the theoretical mechanism of lakefront zone removing nutrient was also investigated.Z.latifolia wetland lakefront zone could remove nitrogen and phosphorus from Jinlong River and the removal ratio can reach 55.8-62.52% and 59.47-69.81% respectively.So,we can indicate that the Jian Lake plateau Z.latifolia wetland lakefront zone had a good effect on controlling agricultural non-point source pollution and protecting the environment.
文摘The system planning of the Northwest China 330 kV Power System from present to the year 2000 is introduced in this paper. Some technical problems arising from the system planning, such as network configuration, system stability and reactive power compensation etc. are also briefly summarized.
基金National major basic-theory planning project Mechanism and Prediction of Strong Earthquake (95130105) and the Key Project from China Seismological Bureau (95040803).
文摘Deterministic, probabilistic and composite-grading methods are used to get the possible locations of strong earth-quakes in the future in Norwest Beijing and its vicinity based on the quantitative data and their accuracy about active tectonics in the research area and by ordering, some questions in the results are also discussed. It shows that the most dangerous fault segments for strong earthquakes in the future include: segments B and A of the southern boundary fault of the Yangyuan basin, the southern boundary fault of the Xuanhua basin, the east segment of the southern Huaian fault and the east segment of the northern YanggaoTianzhen fault. The most dangerous area is YangyuanShenjing basin, the second one is TianzhenHuaianXuanhua basin and the third dangerous areas are WanquanZhangjiakou and northeast of Yuxian to southwest of Fanshan.
基金National Natural Science Foundation of China,No.41471030,No.41501211
文摘Climate change and water resource issues are global problems of common concern to the international community, and they are major bottlenecks affecting the eco-environment and sustainable socio-economic development in the arid region of Northwest China. On the basis of results from previous studies, this paper points out that the unique landscape of Northwest China increases the complexity and uncertainty of the climate system. This paper analyzes the key constraints on socio-economic development and ecological security in the region, discusses the impact of climate change on water resources in Northwest China, identifies common themes and the main problems present in research on climate change and water resources in the arid northwest region, and finally, based on the importance and urgency of conducting research on the region's water resources, proposes scientific problems that need to be addressed: first, the impact of climate change on the formation, conversion and future trends of water resources in the region; second, bidirectional coupling of high-resolution regional climate models and water cycle models of arid region land surface patterns; third, the impact of climate change and human activities on water resources of the arid northwest region. Through consideration and discussion of the above, this paper seeks to further clarify specific areas of research on pressing issues related to climate change and water resources in Northwest China, so as to establish a solid scientific basis for significantly enhancing our ability to respond to climate change and water shortages.
基金supported by the National Natural Science Foundation of China (41630859)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19030204)
文摘The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oasis ecosystem. This paper summarizes the hydrological processes and water cycle of inland river basins in the ARNC, focusing on the following aspects: the spatial-temporal features of water resources(including air water vapor resources, runoff, and glacial meltwater) and their driving forces; the characteristics of streamflow composition in the inland river basins; the characteristics and main controlling factors of baseflow in the inland rivers; and anticipated future changes in hydrological processes and water resources. The results indicate that:(1) although the runoff in most inland rivers in the ARNC showed a significant increasing trend, both the glaciated area and glacial ice reserves have been reduced in the mountains;(2) snow melt and glacier melt are extremely important hydrological processes in the ARNC, especially in the Kunlun and Tianshan mountains;(3) baseflow in the inland rivers of the ARNC is the result of climate change and human activities, with the main driving factors being the reduction in forest area and the over-exploitation and utilization of groundwater in the river basins; and(4) the contradictions among water resources, ecology and economy will further increase in the future. The findings of this study might also help strengthen the ecological, economic and social sustainable development in the study region.