In this paper, we introduce a new class of generalized dI-univexity in which each component of the objective and constraint functions is directionally differentiable in its own direction di for a nondifferentiable mul...In this paper, we introduce a new class of generalized dI-univexity in which each component of the objective and constraint functions is directionally differentiable in its own direction di for a nondifferentiable multiobjective programming problem. Based upon these generalized functions, sufficient optimality conditions are established for a feasible point to be efficient and properly efficient under the generalised dI-univexity requirements. Moreover, weak, strong and strict converse duality theorems are also derived for Mond-Weir type dual programs.展开更多
To relax convexity assumptions imposed on the functions in theorems on sufficient conditions and duality,new concepts of generalized dI-G-type Ⅰ invexity were introduced for nondifferentiable multiobjective programmi...To relax convexity assumptions imposed on the functions in theorems on sufficient conditions and duality,new concepts of generalized dI-G-type Ⅰ invexity were introduced for nondifferentiable multiobjective programming problems.Based upon these generalized invexity,G-Fritz-John (G-F-J) and G-Karnsh-Kuhn-Tucker (G-K-K-T) types sufficient optimality conditions were established for a feasible solution to be an efficient solution.Moreover,weak and strict duality results were derived for a G-Mond-Weir type dual under various types of generalized dI-G-type Ⅰ invexity assumptions.展开更多
In this paper, we derive optimality conditions for a nondifferentiable multiobjective programming problem containing a certain square root of a quadratic form in each component of the objective function in the presenc...In this paper, we derive optimality conditions for a nondifferentiable multiobjective programming problem containing a certain square root of a quadratic form in each component of the objective function in the presence of equality and inequality constraints. As an application of Karush-Kuhn-Tucker type optimality conditions, a Mond-Weir type dual to this problem is formulated and various duality results are established under generalized invexity assumptions. Finally, a special case is deduced from our result.展开更多
Fritz John and Karush-Kuhn-Tucker type optimality conditions for a nondifferentiable multiobjective variational problem are derived. As an application of Karush-Kuhn-Tucker type optimality conditions, Mond-weir type s...Fritz John and Karush-Kuhn-Tucker type optimality conditions for a nondifferentiable multiobjective variational problem are derived. As an application of Karush-Kuhn-Tucker type optimality conditions, Mond-weir type second-order nondifferentiable multiobjective dual variational problems is constructed. Various duality results for the pair of Mond-Weir type second-order dual variational problems are proved under second-order pseudoinvexity and second-order quasi-invexity. A pair of Mond-Weir type dual variational problems with natural boundary values is formulated to derive various duality results. Finally, it is pointed out that our results can be considered as dynamic generalizations of their static counterparts existing in the literature.展开更多
This paper gives a new dual problem for nondifferentiable convex programming and provesthe properties of weak duality and strong duality and offers a necessary and sufficient condition ofstrong duality.
In this paper,we point out some deficiencies in a recent paper(Lee and Kim in J.Nonlinear Convex Anal.13:599–614,2012),and we establish strong duality and converse duality theorems for two types of nondifferentiable...In this paper,we point out some deficiencies in a recent paper(Lee and Kim in J.Nonlinear Convex Anal.13:599–614,2012),and we establish strong duality and converse duality theorems for two types of nondifferentiable higher-order symmetric duals multiobjective programming involving cones.展开更多
A new concept of(Φ,ρ,α)-V-invexity for differentiable vector-valued functions is introduced,which is a generalization of differentiable scalar-valued(Φ,ρ)-invexity.Based upon the(Φ,ρ,α)-V-invex functions,suffi...A new concept of(Φ,ρ,α)-V-invexity for differentiable vector-valued functions is introduced,which is a generalization of differentiable scalar-valued(Φ,ρ)-invexity.Based upon the(Φ,ρ,α)-V-invex functions,sufficient optimality conditions and MondWeir type dual theorems are derived for a class of nondifferentiable multiobjective fractional programming problems in which every component of the objective function and each constraint function contain a term involving the support function of a compact convex set.展开更多
The Kuhn-Tucker theorem in nondifferential form is a well-known classical optimality criterion for a convex programming problems which is true for a convex problem in the case when a Kuhn-Tucker vector exists. It is n...The Kuhn-Tucker theorem in nondifferential form is a well-known classical optimality criterion for a convex programming problems which is true for a convex problem in the case when a Kuhn-Tucker vector exists. It is natural to extract two features connected with the classical theorem. The first of them consists in its possible “impracticability” (the Kuhn-Tucker vector does not exist). The second feature is connected with possible “instability” of the classical theorem with respect to the errors in the initial data. The article deals with the so-called regularized Kuhn-Tucker theorem in nondifferential sequential form which contains its classical analogue. A proof of the regularized theorem is based on the dual regularization method. This theorem is an assertion without regularity assumptions in terms of minimizing sequences about possibility of approximation of the solution of the convex programming problem by minimizers of its regular Lagrangian, that are constructively generated by means of the dual regularization method. The major distinctive property of the regularized Kuhn-Tucker theorem consists that it is free from two lacks of its classical analogue specified above. The last circumstance opens possibilities of its application for solving various ill-posed problems of optimization, optimal control, inverse problems.展开更多
In this paper, a trust region method for equality constrained optimizationbased on nondifferentiable exact penalty is proposed. In this algorithm, the trail step ischaracterized by computation of its normal component ...In this paper, a trust region method for equality constrained optimizationbased on nondifferentiable exact penalty is proposed. In this algorithm, the trail step ischaracterized by computation of its normal component being separated from computation of itstangential component, i.e., only the tangential component of the trail step is constrained by trustradius while the normal component and trail step itself have no constraints. The other maincharacteristic of the algorithm is the decision of trust region radius. Here, the decision of trustregion radius uses the information of the gradient of objective function and reduced Hessian.However, Maratos effect will occur when we use the nondifferentiable exact penalty function as themerit function. In order to obtain the superlinear convergence of the algorithm, we use the twiceorder correction technique. Because of the speciality of the adaptive trust region method, we usetwice order correction when p = 0 (the definition is as in Section 2) and this is different from thetraditional trust region methods for equality constrained optimization. So the computation of thealgorithm in this paper is reduced. What is more, we can prove that the algorithm is globally andsuperlinearly convergent.展开更多
A pair of symmetric duals for a class of nondifferentiable multiobjective fractional programmings is formulated, and appropriate duality theorems are established.
In this paper, we construct a class of nowhere differentiable continuous functions by means of the Cantor series expression of real numbers. The constructed functions include some known nondifferentiable functions, su...In this paper, we construct a class of nowhere differentiable continuous functions by means of the Cantor series expression of real numbers. The constructed functions include some known nondifferentiable functions, such as Bush type functions. These functions are fractal functions since their graphs are in general fractal sets. Under certain conditions, we investigate the fractal dimensions of the graphs of these functions, compute the precise values of Box and Packing dimensions, and evaluate the Hausdorff dimension. Meanwhile, the Holder continuity of such functions is also discussed.展开更多
We have structured the new differential approximation, Vα-approximation, about the maximum function max{fi(x)}. On the basis of which the kind of minimax algorithms and its convergence are proved. Some numerical exam...We have structured the new differential approximation, Vα-approximation, about the maximum function max{fi(x)}. On the basis of which the kind of minimax algorithms and its convergence are proved. Some numerical examples are tested. The results show that the algorithm is better than Madsen’s algorithm when the problem is singular.展开更多
文摘In this paper, we introduce a new class of generalized dI-univexity in which each component of the objective and constraint functions is directionally differentiable in its own direction di for a nondifferentiable multiobjective programming problem. Based upon these generalized functions, sufficient optimality conditions are established for a feasible point to be efficient and properly efficient under the generalised dI-univexity requirements. Moreover, weak, strong and strict converse duality theorems are also derived for Mond-Weir type dual programs.
基金National Natural Science Foundation of China(No.11071110)
文摘To relax convexity assumptions imposed on the functions in theorems on sufficient conditions and duality,new concepts of generalized dI-G-type Ⅰ invexity were introduced for nondifferentiable multiobjective programming problems.Based upon these generalized invexity,G-Fritz-John (G-F-J) and G-Karnsh-Kuhn-Tucker (G-K-K-T) types sufficient optimality conditions were established for a feasible solution to be an efficient solution.Moreover,weak and strict duality results were derived for a G-Mond-Weir type dual under various types of generalized dI-G-type Ⅰ invexity assumptions.
文摘In this paper, we derive optimality conditions for a nondifferentiable multiobjective programming problem containing a certain square root of a quadratic form in each component of the objective function in the presence of equality and inequality constraints. As an application of Karush-Kuhn-Tucker type optimality conditions, a Mond-Weir type dual to this problem is formulated and various duality results are established under generalized invexity assumptions. Finally, a special case is deduced from our result.
文摘Fritz John and Karush-Kuhn-Tucker type optimality conditions for a nondifferentiable multiobjective variational problem are derived. As an application of Karush-Kuhn-Tucker type optimality conditions, Mond-weir type second-order nondifferentiable multiobjective dual variational problems is constructed. Various duality results for the pair of Mond-Weir type second-order dual variational problems are proved under second-order pseudoinvexity and second-order quasi-invexity. A pair of Mond-Weir type dual variational problems with natural boundary values is formulated to derive various duality results. Finally, it is pointed out that our results can be considered as dynamic generalizations of their static counterparts existing in the literature.
文摘This paper gives a new dual problem for nondifferentiable convex programming and provesthe properties of weak duality and strong duality and offers a necessary and sufficient condition ofstrong duality.
基金This work was partially supported by the National Natural Science Foundation of China(Nos.11271391 and 10831009)d the Natural Science Foundation of Chongqing(CSTC,No.2011BA0030).
文摘In this paper,we point out some deficiencies in a recent paper(Lee and Kim in J.Nonlinear Convex Anal.13:599–614,2012),and we establish strong duality and converse duality theorems for two types of nondifferentiable higher-order symmetric duals multiobjective programming involving cones.
基金National Natural Science Foundation of China(No.11071110)
文摘A new concept of(Φ,ρ,α)-V-invexity for differentiable vector-valued functions is introduced,which is a generalization of differentiable scalar-valued(Φ,ρ)-invexity.Based upon the(Φ,ρ,α)-V-invex functions,sufficient optimality conditions and MondWeir type dual theorems are derived for a class of nondifferentiable multiobjective fractional programming problems in which every component of the objective function and each constraint function contain a term involving the support function of a compact convex set.
文摘The Kuhn-Tucker theorem in nondifferential form is a well-known classical optimality criterion for a convex programming problems which is true for a convex problem in the case when a Kuhn-Tucker vector exists. It is natural to extract two features connected with the classical theorem. The first of them consists in its possible “impracticability” (the Kuhn-Tucker vector does not exist). The second feature is connected with possible “instability” of the classical theorem with respect to the errors in the initial data. The article deals with the so-called regularized Kuhn-Tucker theorem in nondifferential sequential form which contains its classical analogue. A proof of the regularized theorem is based on the dual regularization method. This theorem is an assertion without regularity assumptions in terms of minimizing sequences about possibility of approximation of the solution of the convex programming problem by minimizers of its regular Lagrangian, that are constructively generated by means of the dual regularization method. The major distinctive property of the regularized Kuhn-Tucker theorem consists that it is free from two lacks of its classical analogue specified above. The last circumstance opens possibilities of its application for solving various ill-posed problems of optimization, optimal control, inverse problems.
基金This research is supported in part by the National Natural Science Foundation of China(Grant No. 39830070,10171055)and China Postdoctoral Science Foundation
文摘In this paper, a trust region method for equality constrained optimizationbased on nondifferentiable exact penalty is proposed. In this algorithm, the trail step ischaracterized by computation of its normal component being separated from computation of itstangential component, i.e., only the tangential component of the trail step is constrained by trustradius while the normal component and trail step itself have no constraints. The other maincharacteristic of the algorithm is the decision of trust region radius. Here, the decision of trustregion radius uses the information of the gradient of objective function and reduced Hessian.However, Maratos effect will occur when we use the nondifferentiable exact penalty function as themerit function. In order to obtain the superlinear convergence of the algorithm, we use the twiceorder correction technique. Because of the speciality of the adaptive trust region method, we usetwice order correction when p = 0 (the definition is as in Section 2) and this is different from thetraditional trust region methods for equality constrained optimization. So the computation of thealgorithm in this paper is reduced. What is more, we can prove that the algorithm is globally andsuperlinearly convergent.
文摘A pair of symmetric duals for a class of nondifferentiable multiobjective fractional programmings is formulated, and appropriate duality theorems are established.
基金Supported by the National Natural Sciences Foundation of China (No.39830070 and 10171055).
文摘In this paper, a new SQP method for inequality constrained optimization is proposed and the global convergence is obtained under very mild conditions.
基金the Natural Science Foundation of Education Committee of Anhui Province (No.2001kj198zc).
文摘In this paper, we construct a class of nowhere differentiable continuous functions by means of the Cantor series expression of real numbers. The constructed functions include some known nondifferentiable functions, such as Bush type functions. These functions are fractal functions since their graphs are in general fractal sets. Under certain conditions, we investigate the fractal dimensions of the graphs of these functions, compute the precise values of Box and Packing dimensions, and evaluate the Hausdorff dimension. Meanwhile, the Holder continuity of such functions is also discussed.
基金This work is supported by the National Natural Foundation of China.
文摘We have structured the new differential approximation, Vα-approximation, about the maximum function max{fi(x)}. On the basis of which the kind of minimax algorithms and its convergence are proved. Some numerical examples are tested. The results show that the algorithm is better than Madsen’s algorithm when the problem is singular.