A new putative transposon was identified in the tobacco budworm, Helio- this virescens. This transposon was characterized as a full length CORE-SINE (65 bp of "CORE" core specific nucleotide short interspersed elem...A new putative transposon was identified in the tobacco budworm, Helio- this virescens. This transposon was characterized as a full length CORE-SINE (65 bp of "CORE" core specific nucleotide short interspersed elements) that resembled sequences from three other lepidopterans and humans. In particular, the A-box and B-box regions of this sequence most closely conformed to the signature of CORE-SINEs from widely divergent species. This CORE-SINE was present as a polymorphism in a hypervariable region of the gene hscp, which is the target of pyrethroid insecticides and other xenobiotics in the nerve axon. We described this new putative transposon as Noct-1 due to its presence in a noctuid moth. This is the first description of a full-length CORE-SINE with the A-box, B-box, target site duplication, and candidate core domain from an insect.展开更多
Bifacial PV cells have the capacity to produce solar electricity from both sides and, thus, amongst other advantages, allow a significantly increase both in peak and annual power output while utilizing the same amount...Bifacial PV cells have the capacity to produce solar electricity from both sides and, thus, amongst other advantages, allow a significantly increase both in peak and annual power output while utilizing the same amount of silicone. According to the manufacturer, the bifacial cells are around 1.3 times more expensive than the single-sided cells. This way, bifacial PV cells can effectively reduce the cost of solar power for certain applications. Today, the most common application for these cells is in stationary vertical collectors which are exposed to sunlight from both sides, as the relative position of the sun changes throughout the day. Another possible application is to utilize these cells in concentrating collectors. Three test prototypes utilizing bifacial PV cells were built. The initial two prototypes were built for indoor testing and differed only in geometry of the reflector, one being asymmetric and the other symmetric. Both prototypes were evaluated in an indoor solar simulator. Both reflector designs yielded positive electrical performance results and similar efficiencies from both sides of the cell were achieved. However, lower fill factor than expected was achieved for both designs when compared to the single cell tests. The results are discussed and suggestions for further testing are presented. A third prototype was built in order to perform outdoor evaluations. This prototype utilized a bifacial PV cells string laminated in silicone enclosed between 2 standard glass panes and a collector box with an asymmetric CPC concentrator. The prototype peak electrical efficiency and temperature dependence were evaluated. A comparison between the performance of the bottom and top sides of the asymmetric collector is also presented. Additionally, the incidence modifier angle (IAM) is also briefly discussed.展开更多
文摘A new putative transposon was identified in the tobacco budworm, Helio- this virescens. This transposon was characterized as a full length CORE-SINE (65 bp of "CORE" core specific nucleotide short interspersed elements) that resembled sequences from three other lepidopterans and humans. In particular, the A-box and B-box regions of this sequence most closely conformed to the signature of CORE-SINEs from widely divergent species. This CORE-SINE was present as a polymorphism in a hypervariable region of the gene hscp, which is the target of pyrethroid insecticides and other xenobiotics in the nerve axon. We described this new putative transposon as Noct-1 due to its presence in a noctuid moth. This is the first description of a full-length CORE-SINE with the A-box, B-box, target site duplication, and candidate core domain from an insect.
文摘Bifacial PV cells have the capacity to produce solar electricity from both sides and, thus, amongst other advantages, allow a significantly increase both in peak and annual power output while utilizing the same amount of silicone. According to the manufacturer, the bifacial cells are around 1.3 times more expensive than the single-sided cells. This way, bifacial PV cells can effectively reduce the cost of solar power for certain applications. Today, the most common application for these cells is in stationary vertical collectors which are exposed to sunlight from both sides, as the relative position of the sun changes throughout the day. Another possible application is to utilize these cells in concentrating collectors. Three test prototypes utilizing bifacial PV cells were built. The initial two prototypes were built for indoor testing and differed only in geometry of the reflector, one being asymmetric and the other symmetric. Both prototypes were evaluated in an indoor solar simulator. Both reflector designs yielded positive electrical performance results and similar efficiencies from both sides of the cell were achieved. However, lower fill factor than expected was achieved for both designs when compared to the single cell tests. The results are discussed and suggestions for further testing are presented. A third prototype was built in order to perform outdoor evaluations. This prototype utilized a bifacial PV cells string laminated in silicone enclosed between 2 standard glass panes and a collector box with an asymmetric CPC concentrator. The prototype peak electrical efficiency and temperature dependence were evaluated. A comparison between the performance of the bottom and top sides of the asymmetric collector is also presented. Additionally, the incidence modifier angle (IAM) is also briefly discussed.