Cistanche deserticola(CD) is one of the two authoritative source plants of Cistanches Herba, a well-known medicinal plant. Herein,~1H NMR spectroscopy was employed to characterize the chemical profile and to distingui...Cistanche deserticola(CD) is one of the two authoritative source plants of Cistanches Herba, a well-known medicinal plant. Herein,~1H NMR spectroscopy was employed to characterize the chemical profile and to distinguish the different parts, as well as to propose a new processing workflow for CD.Signal assignment was achieved by multiple one and two dimensional NMR spectroscopic techniques in combination with available databases and authentic compounds. The upper parts of the plant were distinguished from the lower parts by combining ~1H NMR spectroscopic dataset with multivariate statistical analysis. A new processing method that hyphenated steaming with freeze-drying, was demonstrated to be superior to either steaming coupled with oven-drying or direct freeze-drying via holistic ~1H NMR-based metabolomic characterization. Phenylethanoid glycosides, mainly echinacoside and acteoside, were screened out and confirmed as the chemical markers responsible for exhibiting the superiority of the new processing workflow, whereas serial primary metabolites, especially carbohydrates and tricarboxylic acid cycle metabolites, were found as the primary molecules governing the discrimination between the upper and lower parts of the plant. Collectively,~1H NMR spectroscopy was demonstrated as a versatile analytical tool to characterize the chemical profile and to guide the indepth exploitation of CD by providing comprehensive qualitative and quantitative information.展开更多
As a complementary analysis tool to conventional high-field nuclear magnetic resonance(NMR),zero-to ultralow-field(ZULF)NMR detects nuclear magnetization signals in the sub-microtesla regime.Spin-exchange relaxation-f...As a complementary analysis tool to conventional high-field nuclear magnetic resonance(NMR),zero-to ultralow-field(ZULF)NMR detects nuclear magnetization signals in the sub-microtesla regime.Spin-exchange relaxation-free(SERF)atomic magnetometers provide a new generation of sensitive detectors for ZULF NMR.Owing to features such as low cost,high resolution,and portability,ZULF NMR has recently attracted considerable attention in chemistry,biology,medicine,and tests of fundamental physics.This review describes the basic principles,methodology,and recent experimental and theoretical development of ZULF NMR as well as its applications in spectroscopy,quantum control,imaging,NMR-based quantum devices,and tests of fundamental physics.The future prospects of ZULF NMR are also discussed.展开更多
基金financially supported by National Natural Science Foundation of China (Nos. 81222051 and 81403073)Quality Guarantee System of Chinese Herbal Medicines (No. 201507002)International Quality Standards R&D Program of Traditional Chinese Medicine (No. 201307002)
文摘Cistanche deserticola(CD) is one of the two authoritative source plants of Cistanches Herba, a well-known medicinal plant. Herein,~1H NMR spectroscopy was employed to characterize the chemical profile and to distinguish the different parts, as well as to propose a new processing workflow for CD.Signal assignment was achieved by multiple one and two dimensional NMR spectroscopic techniques in combination with available databases and authentic compounds. The upper parts of the plant were distinguished from the lower parts by combining ~1H NMR spectroscopic dataset with multivariate statistical analysis. A new processing method that hyphenated steaming with freeze-drying, was demonstrated to be superior to either steaming coupled with oven-drying or direct freeze-drying via holistic ~1H NMR-based metabolomic characterization. Phenylethanoid glycosides, mainly echinacoside and acteoside, were screened out and confirmed as the chemical markers responsible for exhibiting the superiority of the new processing workflow, whereas serial primary metabolites, especially carbohydrates and tricarboxylic acid cycle metabolites, were found as the primary molecules governing the discrimination between the upper and lower parts of the plant. Collectively,~1H NMR spectroscopy was demonstrated as a versatile analytical tool to characterize the chemical profile and to guide the indepth exploitation of CD by providing comprehensive qualitative and quantitative information.
基金This work was supported by National Key Research and Development Program of China(Grant no.2018YFA0306600)National Natural Science Foun-dation of China(Grants nos.11661161018,11927811)+1 种基金Anhui Initia-tive in Quantum Information Technologies(Grant No.AHY050000)USTC Research Funds of the Double First-Class Initiative(Grant no.YD3540002002).
文摘As a complementary analysis tool to conventional high-field nuclear magnetic resonance(NMR),zero-to ultralow-field(ZULF)NMR detects nuclear magnetization signals in the sub-microtesla regime.Spin-exchange relaxation-free(SERF)atomic magnetometers provide a new generation of sensitive detectors for ZULF NMR.Owing to features such as low cost,high resolution,and portability,ZULF NMR has recently attracted considerable attention in chemistry,biology,medicine,and tests of fundamental physics.This review describes the basic principles,methodology,and recent experimental and theoretical development of ZULF NMR as well as its applications in spectroscopy,quantum control,imaging,NMR-based quantum devices,and tests of fundamental physics.The future prospects of ZULF NMR are also discussed.