We re-examine physical causal propagators for scalar and pseudoscalar bound states at finite temperature in a chiral NJL model, defined by four-point amputated functions subtracted through the gap equation, and prove...We re-examine physical causal propagators for scalar and pseudoscalar bound states at finite temperature in a chiral NJL model, defined by four-point amputated functions subtracted through the gap equation, and prove that they are completely equivalent in the imaginary-time and real-time formalisms by separating carefully the imaginary part of the zero-temperature loop integral. It is shown that the same thermal transformation matrix of the matrix propagators for these bound states in the real-time formalism is precisely the one of the matrix propagator for an elementary scalar particle and this fact shows the similarity of thermodynamic property between a composite and elementary scalar particle. The retarded and advanced propagators for these bound states are also given explicitly from the imaginary-time formalism.展开更多
We derive the scalar resonance coupling constants of resonance chiral theory from the extended Nambu Jona-Lasinio model by using heat-kernel expansion.
The transport equation for the Nambu-Jona-Lasinio (NJL) model isderived phenomenologically. The finite-temperature effective mass for the quarkis analysed, By means of the Chapman-Enskog method and hydrodynamic ap-pro...The transport equation for the Nambu-Jona-Lasinio (NJL) model isderived phenomenologically. The finite-temperature effective mass for the quarkis analysed, By means of the Chapman-Enskog method and hydrodynamic ap-proach the different transport coefficients for the NJL plasma are calculated tothe first order in the relaxation time.展开更多
In this study,we apply a self-consistent mean field approximation of the three-flavor Nambu–Jona-Lasinio(NJL)model and compare it with the two-flavor NJL model.The self-consistent mean field approximation introduces ...In this study,we apply a self-consistent mean field approximation of the three-flavor Nambu–Jona-Lasinio(NJL)model and compare it with the two-flavor NJL model.The self-consistent mean field approximation introduces a new parameter,α,that cannot be fixed in advance by the mean field approach itself.Due to the lack of experimental data,the parameter,α,is undetermined.Hence,it is regarded as a free parameter and its influence on the chiral phase transition of strong interaction matter is studied based on this self-consistent mean field approximation.αaffects numerous properties of the chiral phase transitions,such as the position of the phase transition point and the order of phase transition.Additionally,increasingαwill decrease the number densities of different quarks and increase the chemical potential at which the number density of the strange quark is non-zero.Finally,we observed thatαaffects the equation of state(EOS)of the quark matter,and the sound velocity can be calculated to determine the stiffness of the EOS,which provides a good basis for studying the neutron star mass-radius relationship.展开更多
In this study, we investigate the mass spectra of π and σ mesons at finite chemical potential using theself-consistent NJL model and the Fierz-transformed interaction Lagrangian. The model introduces an arbitrary pa...In this study, we investigate the mass spectra of π and σ mesons at finite chemical potential using theself-consistent NJL model and the Fierz-transformed interaction Lagrangian. The model introduces an arbitrary parameterα to reflect the weights of the Fierz-transformed interaction channels. We show that, when α exceeds a certainthreshold value, the chiral phase transition transforms from a first-order one to a smooth crossover, which is evidentfrom the behaviors of the chiral condensates and meson masses. Additionally, at a high chemical potential, the smallerthe value of α, the higher the masses of the π and σ mesons. Moreover, the Mott and dissociation chemical potentialsincrease with the increase in α. Thus, the meson mass emerges as a valuable experimental observable for determiningthe value of α and investigating the properties of the chiral phase transition in dense QCD matter.展开更多
We investigated the properties of the phase diagram of high-order susceptibilities,speed of sound,and polytropic index based on an extended Nambu-Jona-Lasinio model with an eight-quark scalar-vector interaction.Non-mo...We investigated the properties of the phase diagram of high-order susceptibilities,speed of sound,and polytropic index based on an extended Nambu-Jona-Lasinio model with an eight-quark scalar-vector interaction.Non-monotonic behavior was observed in all these quantities around the phase transition boundary,which also revealed the properties of the critical point.Further,this study indicated that the chiral phase transition boundary and critical point could vary depending on the scalarvector coupling constant G_(SV).At finite densities and temperatures,the negative G_(SV)term exhibited attractive interactions,which enhanced the critical point temperature and reduced the chemical potential.The G_(SV)term also affected the properties of the high-order susceptibilities,speed of sound,and polytropic index near the critical point.The non-monotonic(peak or dip)structures of these quantities shifted to a low baryon chemical potential(and high temperature)with a negative G_(SV).G_(SV)also changed the amplitude and range of the nonmonotonic regions.Therefore,the scalar-vector interaction was useful for locating the phase boundary and critical point in QCD phase diagram by comparing the experimental data.The study of the non-monotonic behavior of high-order susceptibilities,speed of sound,and polytropic index is of great interest,and further observations related to high-order susceptibilities,speed of sound,and polytropic index being found and applied to the search for critical points in heavy-ion collisions and the study of compact stars are eagerly awaited.展开更多
Conserved charge fluctuations can be used to probe the phase structure of strongly interacting nuclear matter in relativistic heavy-ion collisions. To obtain the characteristic signatures of the conserved charge fluct...Conserved charge fluctuations can be used to probe the phase structure of strongly interacting nuclear matter in relativistic heavy-ion collisions. To obtain the characteristic signatures of the conserved charge fluctuations for the quantum chromodynamics(QCD) phase transition, we study the susceptibilities of dense quark matter up to eighth order in detail, using an effective QCD-based model. We studied two cases, one with the QCD critical end point(CEP) and one without owing to an additional vector interaction term. The higher order susceptibilities display rich structures near the CEP and show sign changes as well as large fluctuations. These can provide us information about the presence and location of the CEP. Furthermore, we find that the case without the CEP also shows a similar sign change pattern, but with a relatively smaller magnitude compared with the case with the CEP. Finally, we conclude that higher order susceptibilities of conserved charge can be used to probe the QCD phase structures in heavyion collisions.展开更多
With the two-flavor Nambu–Jona–Lasinio (NJL) model, we carried out a phenomenological study on the chiral phase structure, mesonic properties, and transport properties of momentum-space anisotropic quark matter. To ...With the two-flavor Nambu–Jona–Lasinio (NJL) model, we carried out a phenomenological study on the chiral phase structure, mesonic properties, and transport properties of momentum-space anisotropic quark matter. To calculate the transport coefficients we utilized the kinetic theory in the relaxation time approximation, where the momentum anisotropy is embedded in the estimation of both the distribution function and relaxation time. It was shown that an increase in the anisotropy parameterξmay result in a catalysis of chiral symmetry breaking. The critical endpoint(CEP) is shifted to lower temperatures and larger quark chemical potentials asξincreases, and the impact of momentum anisotropy on the CEP temperature is almost the same as that on the quark chemical potential of the CEP. The meson masses and the associated decay widths also exhibit a significant ξ dependence. It was observed that the temperature behavior of the scaled shear viscosity η/T~3 and scaled electrical conductivity σ/T exhibited a similar dip structure, with the minima of both η/T~3 and σ/T shifting toward higher temperatures with increasing ξ. Furthermore,we demonstrated that the Seebeck coefficient S decreases when the temperature rises and its sign is positive, indicating that the dominant carriers for converting the temperature gradient to the electric field are up-quarks. The Seebeck coefficient S is significantly enhanced with a largeξfor a temperature below the critical temperature.展开更多
We investigate nucleon mass splitting at finite isospin chemical potential in the frame of the two-flavour Nambu-Jona-Lasinio model. It is analytically proven that in the phase with explicit isospin symmetry breaking,...We investigate nucleon mass splitting at finite isospin chemical potential in the frame of the two-flavour Nambu-Jona-Lasinio model. It is analytically proven that in the phase with explicit isospin symmetry breaking, the proton mass decreases and the neutron mass increases linearly in the isospin chemical potential.展开更多
The Nambu–Jona-Lasinio model is utilized to investigate the pion-and kaon-photon leading-twist transition distribution amplitudes using proper time regularization.Separately,the properties of the vector and axial vec...The Nambu–Jona-Lasinio model is utilized to investigate the pion-and kaon-photon leading-twist transition distribution amplitudes using proper time regularization.Separately,the properties of the vector and axial vector pion-photon transition distribution amplitudes are examined,and the results meet the desired properties.Our study involves sum rule and polynomiality condition.The vector and axial vector pion-photon transition form factors that are present in theπ^(+)→γe^(+)νprocess are the first Mellin moments of the pion-photon transition distribution amplitudes.The vector transition form factor originates from the internal structure of hadrons,the axial current can be coupled to a pion,this pion is virtual,and its contribution will be present independently of the external hadrons.The kaon transition form factors are similar.The vector form factor's value at zero momentum transfer is determined by the axial anomaly,while this is not the case for the axial one.The vector and axial form factors,as well as the neutral pion vector form factor F_(πγγ)(t),are depicted.According to our findings,the pion axial transition form factor is harder than the vector transition form factor and harder than the electromagnetic form factor.We also discuss the link betweenπ−γandγ−πtransitions distribution amplitudes.展开更多
We analyze the two flavor version of the Nambu-Jona-Lasinio model with a repulsive vector coupling (GV), at finite temperature and quark chemical potential, in the strong scalar coupling (Gs) regime. Considering GV = ...We analyze the two flavor version of the Nambu-Jona-Lasinio model with a repulsive vector coupling (GV), at finite temperature and quark chemical potential, in the strong scalar coupling (Gs) regime. Considering GV = 0, we review how finite Nc effects are introduced by means of the Optimized Perturbation Theory (OPT) which adds a term to the thermodynamical potential. This 1/ Nc suppressed term is similar to the contribution obtained at the large-Nc limit when GV ≠ 0. Then, scanning over the quark current mass values, we compare these two different model approximations showing that both predict the appearance of two critical points when chiral symmetry is weakly broken. By mapping the first order transition region in the chemical potential-current mass plane, we show that, for low chemical potential values, the first order region shrinks as μ increases but the behavior gets reversed at higher values leading to the back-bending of the critical line. This result, which could help to conciliate some lattice results with model predictions, shows the important role played by finite Nc corrections which are neglected in the majority of the works devoted to the determination of the QCD phase diagram. Recently the OPT, with GV = 0, and the large-Nc approximation, with GV ≠ 0, were compared at zero temperature and finite density for one quark flavor only. The present work extends this comparison to finite temperatures, and two quark flavors, supporting the result that the OPT finite展开更多
文摘We re-examine physical causal propagators for scalar and pseudoscalar bound states at finite temperature in a chiral NJL model, defined by four-point amputated functions subtracted through the gap equation, and prove that they are completely equivalent in the imaginary-time and real-time formalisms by separating carefully the imaginary part of the zero-temperature loop integral. It is shown that the same thermal transformation matrix of the matrix propagators for these bound states in the real-time formalism is precisely the one of the matrix propagator for an elementary scalar particle and this fact shows the similarity of thermodynamic property between a composite and elementary scalar particle. The retarded and advanced propagators for these bound states are also given explicitly from the imaginary-time formalism.
基金The project supported in part by National Natural Science Foundations of China under Grant Nos.10575002 and 10421503
文摘We derive the scalar resonance coupling constants of resonance chiral theory from the extended Nambu Jona-Lasinio model by using heat-kernel expansion.
基金The project supported by the Postdoctor Science Foundation the Nuclear Industry Foundation of China
文摘The transport equation for the Nambu-Jona-Lasinio (NJL) model isderived phenomenologically. The finite-temperature effective mass for the quarkis analysed, By means of the Chapman-Enskog method and hydrodynamic ap-proach the different transport coefficients for the NJL plasma are calculated tothe first order in the relaxation time.
文摘In this study,we apply a self-consistent mean field approximation of the three-flavor Nambu–Jona-Lasinio(NJL)model and compare it with the two-flavor NJL model.The self-consistent mean field approximation introduces a new parameter,α,that cannot be fixed in advance by the mean field approach itself.Due to the lack of experimental data,the parameter,α,is undetermined.Hence,it is regarded as a free parameter and its influence on the chiral phase transition of strong interaction matter is studied based on this self-consistent mean field approximation.αaffects numerous properties of the chiral phase transitions,such as the position of the phase transition point and the order of phase transition.Additionally,increasingαwill decrease the number densities of different quarks and increase the chemical potential at which the number density of the strange quark is non-zero.Finally,we observed thatαaffects the equation of state(EOS)of the quark matter,and the sound velocity can be calculated to determine the stiffness of the EOS,which provides a good basis for studying the neutron star mass-radius relationship.
基金the Start-up Funding of Jiangsu University(4111190010)the Natural Science Foundation of China(12147103)。
文摘In this study, we investigate the mass spectra of π and σ mesons at finite chemical potential using theself-consistent NJL model and the Fierz-transformed interaction Lagrangian. The model introduces an arbitrary parameterα to reflect the weights of the Fierz-transformed interaction channels. We show that, when α exceeds a certainthreshold value, the chiral phase transition transforms from a first-order one to a smooth crossover, which is evidentfrom the behaviors of the chiral condensates and meson masses. Additionally, at a high chemical potential, the smallerthe value of α, the higher the masses of the π and σ mesons. Moreover, the Mott and dissociation chemical potentialsincrease with the increase in α. Thus, the meson mass emerges as a valuable experimental observable for determiningthe value of α and investigating the properties of the chiral phase transition in dense QCD matter.
基金supported by the National Natural Science Foundation of China(Nos.12205158 and 11975132)the Shandong Provincial Natural Science Foundation,China(Nos.ZR2021QA037,ZR2022JQ04 and ZR2019YQ01)。
文摘We investigated the properties of the phase diagram of high-order susceptibilities,speed of sound,and polytropic index based on an extended Nambu-Jona-Lasinio model with an eight-quark scalar-vector interaction.Non-monotonic behavior was observed in all these quantities around the phase transition boundary,which also revealed the properties of the critical point.Further,this study indicated that the chiral phase transition boundary and critical point could vary depending on the scalarvector coupling constant G_(SV).At finite densities and temperatures,the negative G_(SV)term exhibited attractive interactions,which enhanced the critical point temperature and reduced the chemical potential.The G_(SV)term also affected the properties of the high-order susceptibilities,speed of sound,and polytropic index near the critical point.The non-monotonic(peak or dip)structures of these quantities shifted to a low baryon chemical potential(and high temperature)with a negative G_(SV).G_(SV)also changed the amplitude and range of the nonmonotonic regions.Therefore,the scalar-vector interaction was useful for locating the phase boundary and critical point in QCD phase diagram by comparing the experimental data.The study of the non-monotonic behavior of high-order susceptibilities,speed of sound,and polytropic index is of great interest,and further observations related to high-order susceptibilities,speed of sound,and polytropic index being found and applied to the search for critical points in heavy-ion collisions and the study of compact stars are eagerly awaited.
基金Supported in part by the National Natural Science Foundation of China(11475085,11535005,11690030,11575069,11221504)the MoST of China 973-Project(2015CB856901)
文摘Conserved charge fluctuations can be used to probe the phase structure of strongly interacting nuclear matter in relativistic heavy-ion collisions. To obtain the characteristic signatures of the conserved charge fluctuations for the quantum chromodynamics(QCD) phase transition, we study the susceptibilities of dense quark matter up to eighth order in detail, using an effective QCD-based model. We studied two cases, one with the QCD critical end point(CEP) and one without owing to an additional vector interaction term. The higher order susceptibilities display rich structures near the CEP and show sign changes as well as large fluctuations. These can provide us information about the presence and location of the CEP. Furthermore, we find that the case without the CEP also shows a similar sign change pattern, but with a relatively smaller magnitude compared with the case with the CEP. Finally, we conclude that higher order susceptibilities of conserved charge can be used to probe the QCD phase structures in heavyion collisions.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research (No.2020B0301030008)the Natural Science Foundation of China (No.11935007)the Science and Technology Program of Guangzhou (No.2019050001).
文摘With the two-flavor Nambu–Jona–Lasinio (NJL) model, we carried out a phenomenological study on the chiral phase structure, mesonic properties, and transport properties of momentum-space anisotropic quark matter. To calculate the transport coefficients we utilized the kinetic theory in the relaxation time approximation, where the momentum anisotropy is embedded in the estimation of both the distribution function and relaxation time. It was shown that an increase in the anisotropy parameterξmay result in a catalysis of chiral symmetry breaking. The critical endpoint(CEP) is shifted to lower temperatures and larger quark chemical potentials asξincreases, and the impact of momentum anisotropy on the CEP temperature is almost the same as that on the quark chemical potential of the CEP. The meson masses and the associated decay widths also exhibit a significant ξ dependence. It was observed that the temperature behavior of the scaled shear viscosity η/T~3 and scaled electrical conductivity σ/T exhibited a similar dip structure, with the minima of both η/T~3 and σ/T shifting toward higher temperatures with increasing ξ. Furthermore,we demonstrated that the Seebeck coefficient S decreases when the temperature rises and its sign is positive, indicating that the dominant carriers for converting the temperature gradient to the electric field are up-quarks. The Seebeck coefficient S is significantly enhanced with a largeξfor a temperature below the critical temperature.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10428510 and 10575058. One of the authors (Chang S.) thanks the High Energy Nuclear Physics Group of Tsinghua University for kind hospitality and Lianyi He and Xuewen Hao for helpful discussions.
文摘We investigate nucleon mass splitting at finite isospin chemical potential in the frame of the two-flavour Nambu-Jona-Lasinio model. It is analytically proven that in the phase with explicit isospin symmetry breaking, the proton mass decreases and the neutron mass increases linearly in the isospin chemical potential.
基金Supported by the Scientific Research Foundation of Nanjing Institute of Technology(YKJ202352)the Natural Science Foundation of Jiangsu Province,China(BK20191472)the China Postdoctoral Science Foundation(2022M721564)。
文摘The Nambu–Jona-Lasinio model is utilized to investigate the pion-and kaon-photon leading-twist transition distribution amplitudes using proper time regularization.Separately,the properties of the vector and axial vector pion-photon transition distribution amplitudes are examined,and the results meet the desired properties.Our study involves sum rule and polynomiality condition.The vector and axial vector pion-photon transition form factors that are present in theπ^(+)→γe^(+)νprocess are the first Mellin moments of the pion-photon transition distribution amplitudes.The vector transition form factor originates from the internal structure of hadrons,the axial current can be coupled to a pion,this pion is virtual,and its contribution will be present independently of the external hadrons.The kaon transition form factors are similar.The vector form factor's value at zero momentum transfer is determined by the axial anomaly,while this is not the case for the axial one.The vector and axial form factors,as well as the neutral pion vector form factor F_(πγγ)(t),are depicted.According to our findings,the pion axial transition form factor is harder than the vector transition form factor and harder than the electromagnetic form factor.We also discuss the link betweenπ−γandγ−πtransitions distribution amplitudes.
基金partially supported by CAPES,CNPq and FAPESC(Fundacao de Amparo a Pesquisa e Inovacao do Estado de Santa Catarina).
文摘We analyze the two flavor version of the Nambu-Jona-Lasinio model with a repulsive vector coupling (GV), at finite temperature and quark chemical potential, in the strong scalar coupling (Gs) regime. Considering GV = 0, we review how finite Nc effects are introduced by means of the Optimized Perturbation Theory (OPT) which adds a term to the thermodynamical potential. This 1/ Nc suppressed term is similar to the contribution obtained at the large-Nc limit when GV ≠ 0. Then, scanning over the quark current mass values, we compare these two different model approximations showing that both predict the appearance of two critical points when chiral symmetry is weakly broken. By mapping the first order transition region in the chemical potential-current mass plane, we show that, for low chemical potential values, the first order region shrinks as μ increases but the behavior gets reversed at higher values leading to the back-bending of the critical line. This result, which could help to conciliate some lattice results with model predictions, shows the important role played by finite Nc corrections which are neglected in the majority of the works devoted to the determination of the QCD phase diagram. Recently the OPT, with GV = 0, and the large-Nc approximation, with GV ≠ 0, were compared at zero temperature and finite density for one quark flavor only. The present work extends this comparison to finite temperatures, and two quark flavors, supporting the result that the OPT finite