期刊文献+
共找到266篇文章
< 1 2 14 >
每页显示 20 50 100
Degradation properties of fulvic acid and its microbially driven mechanism from a partial nitritation bioreactor through multi-spectral and bioinformatic analysis 被引量:2
1
作者 Quanhao Dou Li Zhang +5 位作者 Tingjun Dong Zixuan Song Xuepeng Fan Yongzhen Peng Xiayan Wang Jiachun Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期318-331,共14页
This study employed multispectral techniques to evaluate fulvic acid(FA)compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation(PN)process.Results showed that FA removal eff... This study employed multispectral techniques to evaluate fulvic acid(FA)compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation(PN)process.Results showed that FA removal efficiency(FRE)decreased from 90.22 to 23.11%when FA concentrations in the reactor were increased from 0 to 162.30 mg/L,and that molecular size,degree of aromatization and humification of the effluent FA macromolecules all increased after treatment.Microbial population analysis indicated that the proliferation of the Comamonas,OLB12 and Thauera exhibit high FA utilization capacity in lower concentrations(<50.59 mg/L),promoting the degradation and removal of macromolecular FA.In addition,the sustained increase in external FA may decrease the abundance of above functional microorganisms,resulting in a rapid drop in FRE.Furthermore,from the genetic perspective,the elevated FA levels restricted carbohydrate(ko00620,ko00010 and ko00020)and nitrogen(HAO,AMO,NIR and NOR)metabolism-related pathways,thereby impeding FA removal and total nitrogen loss associated with N_(2)O emissions. 展开更多
关键词 Partial nitritation Fulvic acid 3DEEM-PARAFAC UV/Vis Microbially driven mechanism
原文传递
Community analysis of ammonia oxidizer in the oxygen-limited nitritation stage of OLAND system by DGGE of PCR amplified 16S rDNA fragments and FISH 被引量:17
2
作者 ZHANGDan ZHANGDe-min +2 位作者 LIUYao-ping CAOWen-wei CHENGuan-xiong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期838-842,共5页
OLAND(oxygen limited autotrophic nitrification and denitrification) nitrogen removal system was constructed by coupling with oxygen limited nitritation stage and anaerobic ammonium oxidation stage. Ammonia oxidizer, a... OLAND(oxygen limited autotrophic nitrification and denitrification) nitrogen removal system was constructed by coupling with oxygen limited nitritation stage and anaerobic ammonium oxidation stage. Ammonia oxidizer, as a kind of key bacteria in N cycle, plays an important role at the oxygen limited nitritation stage of OLAND nitrogen removal system. In this study, specific amplification of 16S rDNA fragment of ammonia oxidizer by nested PCR, separation of mixed PCR samples by denaturing gradient gel electrophoresis(DGGE), and the quantification of ammonia oxidizer by fluorescence in situ hybridization(FISH) were combined to investigate the shifts of community composition and quantity of ammonia oxidizer of the oxygen limited nitritation stage in OLAND system. It showed that the community composition of ammonia oxidizer changed drastically when dissolved oxygen was decreased gradually, and the dominant ammonia oxidizer of the steady nitrite accumulation stage were completely different from that of the early stage of oxygen limited nitritation identified by DGGE . It was concluded that the Nitrosomonas may be the dominant genus of ammonia oxidizer at the oxygen limited nitritation stage of OLAND system characterized by nested PCR-DGGE and FISH, and the percentage of Nitrosomonas was 72.5% ±0.8% of ammonia oxidizer at the steady nitrite accumulation stage detected by FISH. 展开更多
关键词 OLAND nitritation ammonia oxidizer DGGE FISH
在线阅读 下载PDF
Control factors of partial nitritation for landfill leachate treatment 被引量:16
3
作者 LIANG Zhu LIU Jun-xin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第5期523-529,共7页
Anaerobic ammonium oxidation (ANAMMOX) technology has potential technical superiority and economical efficiency for the nitrogen removal from landfill leachate, which contains high-strength ammonium nitrogen (NH4^... Anaerobic ammonium oxidation (ANAMMOX) technology has potential technical superiority and economical efficiency for the nitrogen removal from landfill leachate, which contains high-strength ammonium nitrogen (NH4^+-N) and refractory organics. To complete the ANAMMOX process, a preceding partial nitritation step to produce the appropriate ratio of nitrite/ammonium is a key stage. The objective of this study was to determine the optimal conditions to acquire constant partial nitritation for landfill leachate treatment, and a bench scale fixed bed bio-film reactor was used in this study to investigate the effects of the running factors on the partial nitritation. The results showed that both the dissolved oxygen (DO) concentration and the ammonium volumetric loading rate (Nv) had effects on the partial nitritation. In the controlling conditions with a temperature of 30±1℃, Nv of 0.2-1.0 kg NH4+-N/(m^3·d), and DO concentration of 0.8-2.3 mg/L, the steady partial nitritation was achieved as follows: more than 94% partial nitritation efficiency (nitrite as the main product), 60%-74% NH4^+-N removal efficiency, and NO2^--N/NH4^+-N ratio (concentration ratio) of 1.0-1.4 in the effluent.The impact of temperature was related to Nv at certain DO concentration, and the temperature range of 25-30℃ was suitable for treating high strength ammonium leachate. Ammonium-oxidizing bacteria (AOB) could be acclimated to higher FA (free ammonium) in the range of 122-224 mg/L. According to the denaturing gradient gel electrophoresis analysis result of the bio-film in the reactor, there were 25 kinds of 16S rRNA gene fragments, which indicated that abundant microbial communities existed in the bio-film, although high concentrations of ammonium and FA may inhibit the growth of the nitrite-oxidizing bacteria (NOB) and other microorganisms in the reactor. 展开更多
关键词 landfill leachate biological nitrogen removal partial nitritation ANAMMOX
在线阅读 下载PDF
Model-based evaluation on the conversion ratio of ammonium to nitrite in a nitritation process for ammonium-rich wastewater treatment 被引量:4
4
作者 LIXiao-ming YANGQi +4 位作者 ZENGGuang-ming A.Cornelius K.H.Rosenwinkel S.Kunst D.Weichgrebe 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第6期1005-1010,共6页
Modeling for nitritation process was discussed and analyzed quantitatively for the factors that influence nitrite accumulation. The results indicated that pH, inorganic carbon source and Hydraulic Retention Time(HRT) ... Modeling for nitritation process was discussed and analyzed quantitatively for the factors that influence nitrite accumulation. The results indicated that pH, inorganic carbon source and Hydraulic Retention Time(HRT) as well as biomass concentration are the main factors that influenced the conversion ratio of ammonium to nitrite. A constant high pH can lead to a high nitritation rate and results in high conversion ratio on condition that free ammonia inhibition do not happen. In a CSTR system, without pH control, this conversion ratio can be monitored by pH variation in the reactor. The pH goes down far from the inlet level means a strongly nitrite accumulation. High concentration of alkalinity can promoted the conversion ratio by means of accelerating the nitritation rate through providing sufficient inorganic carbon source(carbon dioxide). When inorganic carbon source was depleted, the nitritation process stopped. HRT adjustment could be an efficient way to make the nitritation system run more flexible, which to some extent can meet the requirements of the fluctuant of inlet parameters such as ammonium concentration, pH, and temperature and so on. Biomass concentration is the key point, especially for a CSTR system in steady state, which was normally circumscribed by the characteristics of bacteria and may also affected by aeration mode and can be increased by prolonging the HRT on the condition of no nitrate accumulation when no recirculation available. The higher the biomass concentration is, the better the nitrite accumulation can be obtained. 展开更多
关键词 conversion ratio modeling analysis nitritation process nitrite accumulation
在线阅读 下载PDF
Effect of anaerobic digestion on the high rate of nitritation,treating piggery wastewater 被引量:3
5
作者 Jiyeol Im Kyungik Gil 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第11期1787-1793,共7页
The amount of piggery wastewater as domestic livestock is increasing.The volume of piggery wastewater produced is less than the volume of other wastewaters,but piggery wastewater has a heavy impact on wastewater strea... The amount of piggery wastewater as domestic livestock is increasing.The volume of piggery wastewater produced is less than the volume of other wastewaters,but piggery wastewater has a heavy impact on wastewater streams due to an extremely high concentration of nitrogen and COD.In this study,laboratory reactors were operated using piggery wastewater and the effluent of anaerobic digester from piggery wastewater plants.The purpose of this study was to induce the nitritation process,which is an economically advantageous nitrogen removal method that converts ammonium nitrogen into nitrite.The results showed that the effluent of anaerobic digester from piggery wastewater was more efficient than raw piggery wastewater in terms of inducing nitritation.It can be deduced that nitritation is largely affected by an organic fraction of piggery wastewater.It can also be concluded that a small amount of biodegradable organic matter in piggery wastewater is efficient in inducing nitritation. 展开更多
关键词 piggery wastewater anaerobic digestion nitritation NITROGEN
原文传递
Achieving robust nitritation in a modified continuous-flow reactor: From micro-granule cultivation to nitrite-oxidizing bacteria elimination 被引量:3
6
作者 Wenru Liu Jiajun Song +3 位作者 Jianfang Wang Xiaoming Ji Yaoliang Shen Dianhai Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第2期117-129,共13页
In this study,a modified continuous-flow nitrifying reactor was successfully operated for rapid cultivation of micro-granules and achieving robust nitritation.Results showed that sludge granulation with mean size of c... In this study,a modified continuous-flow nitrifying reactor was successfully operated for rapid cultivation of micro-granules and achieving robust nitritation.Results showed that sludge granulation with mean size of ca.100μm was achieved within three weeks by gradually increasing settling velocity-based selection pressure from 0.48 to 0.9 m/hr.Though Nitrospira like nitrite-oxidizing bacteria(NOB)were enriched in the micro-granules with a ratio between ammonia-oxidizing bacteria(AOB)and NOB of 5.7%/6.5% on day 21,fast nitritation was achieved within one-week by gradually increasing of influent ammonium concentration(from 50 to 200 mg/L).Maintaining ammonium in-excess was the key for repressing NOB in the micro-granules.Interestingly,when the influent ammonium concentration switched back to 50 mg/L still with the residual ammonium of 15–25 mg/L,the nitrite accumulation efficiency increased from 90%to 98%.Experimental results suggested that the NOB repression was intensified by both oxygen and nitrite unavailability in the inner layers of micro-granules.Unexpectedly,continuous operation with ammonium in excess resulted in overproduction of extracellular polysaccharides and overgrowth of some bacteria(e.g.,Nitrosomonas,Arenimonas,and Flavobacterium),which deteriorated the micro-granule stability and drove the micro-granules aggregation into larger ones with irregular morphology.However,efficient nitritation was stably maintained with extremely high ammonium oxidation potential(>50 mg/g VSS/hr)and nearly complete washout of NOB was obtained.This suggested that smooth and spherical granule was not a prerequisite for achieving NOB wash-out and maintaining effective nitritation in the granular reactor.Overall,the microgranules exhibited a great practical potential for high-rate nitritation. 展开更多
关键词 Continuous flow GRANULATION nitritation Nitrate-oxidizing bacteria REPRESSION
原文传递
Performance,microbial community and inhibition kinetics of long-term Cu2+ stress on an air-lift nitritation reactor with self-recirculation 被引量:3
7
作者 Fan Feng Cheng-Shan Duan +6 位作者 Xi Tang Xi Chen Xuan Lu Xi-Lin Chai Qaisar Mahmood Chong-Jian Tang Li-Yuan Chai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第5期117-127,共11页
Biological nitrogen removal process could be affected due to the presence of heavy metals owing to their toxicity and accumulation in the sludge.In this study,the impact of Cu2+shock on a long-term nitritation operati... Biological nitrogen removal process could be affected due to the presence of heavy metals owing to their toxicity and accumulation in the sludge.In this study,the impact of Cu2+shock on a long-term nitritation operation was investigated in an air-lift reactor with selfrecirculation.Both the dynamics of microbial community and inhibition kinetics under Cu2+stress were ascertained.The results showed that Cu2+exerted severe inhibition on nitritation performance of an air-lift reactor(ALR)at 25 mg/L.The corresponding NH4+-N removal efficiency decreased to below 50%,which was mainly due to the variation of microbial community structure,especially the inhibition of nitrifiers like Nitrosomonas(the relative abundance decreased from 30%to 1%after Cu2+inhibition).Kinetic parameters were obtained and compared after fitting the Haldane model.The long-term Cu2+stress on the ALR aggravated the ammonium affinity and the resistance to substrate self-inhibition of the nitritation sludge,but reduced the resistance to Cu2+inhibition.Furthermore,Cu2+acted as uncompetitive inhibitor on nitritation process.Our results provide new insights into the nitritation characteristics under long-term Cu2+stress. 展开更多
关键词 nitritation Cu2+inhibition Microbial structure Haldane model Kinetics
原文传递
Metagenomic insights into responses of microbial population and key functional genes to fulvic acid during partial nitritation 被引量:3
8
作者 Li Zhang Shuang Lan +6 位作者 Quanhao Dou Shiwei Hao Yueping Wang Xiaoxuan Wang Ruoyan Zhang Yongzhen Peng Jiachun Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第2期952-962,共11页
The long-term impact of fulvic acid(FA)on partial nitritation(PN)systemwas initially examined in this study.The obtained results revealed that the FA lower than 50 mg/L had negligible effect on the nitrite accumulatio... The long-term impact of fulvic acid(FA)on partial nitritation(PN)systemwas initially examined in this study.The obtained results revealed that the FA lower than 50 mg/L had negligible effect on the nitrite accumulation rate(NAR nearly 100%)and ammonium removal rate(ARR 56.85%),while FA over 50 mg/L decreased ARR from 56.85%to 0.7%.Sludge characteristics analysis found that appropriate FA(<50 mg/L)exposure promoted the settling performance and granulation of PN sludge by removing Bacteroidetes and accumulating Chloroflexi.The analysis of metagenomics suggested that the presence of limited FA(0-50 mg/L)stimulated the generation of NADH,which favors the denitrification and nitrite reduction.The negative impact of FA on the PN system could be divided into two stages.Initially,limited FA(50-120 mg/L)was decomposed by Anaerolineae to stimulate the growth and propagation of heterotrophic bacteria(Thauera).Increasing heterotrophs competed with AOB(Nitrosomonas)for dissolved oxygen,causing AOB to be eliminated and ARR to declined.Subsequently,when FA dosage was over 120 mg/L,Anaerolineae were inhibited and heterotrophic bacteria reduced,resulting in the abundance of AOB recovered.Nevertheless,the ammonium transformation pathway was suppressed because genes amoABC and hao were obviously reduced,leading to the deterioration of reactor performance.Overall,these results provide theoretical guidance for the practical application of PN for the treatment of FA-containing sewage. 展开更多
关键词 Partial nitritation Fulvic acid Microbial community Functional genes METAGENOMIC
原文传递
Insights into the mechanism of the deterioration of mainstream partial nitritation/anammox under low residual ammonium 被引量:3
9
作者 Yandong Yang Yiming Jiang +4 位作者 Yanan Long Jiarui Xu Changqing Liu Liang Zhang Yongzhen Peng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第4期29-39,共11页
Residual ammonium is a critical parameter affecting the stability of mainstream partial nitritation/anammox(PN/A), but the underlying mechanism remains unclear. In this study,mainstream PN/A was established and operat... Residual ammonium is a critical parameter affecting the stability of mainstream partial nitritation/anammox(PN/A), but the underlying mechanism remains unclear. In this study,mainstream PN/A was established and operated with progressively decreasing residual ammonium. PN/A deteriorated as the residual ammonium decreased to below 5 mg/L, and this was paralleled by a significant loss in anammox activity in situ and an increasing nitrite oxidation rate. Further analysis revealed that the low-ammonium condition directly decreased anammox activity in situ via two distinct mechanisms. First, anammox bacteria were located in the inner layer of the granular sludge, and thus were disadvantageous when competing for ammonium with ammonium-oxidizing bacteria(AOB) in the outer layer. Second, the complete ammonia oxidizer(comammox) was enriched at low residual ammonium concentrations because of its high ammonium affinity. Both AOB and comammox presented kinetic advantages over anammox bacteria. At high residual ammonium concentrations,nitrite-oxidizing bacteria(NOB) were effectively suppressed, even when their maximum activity was high due to competition for nitrite with anammox bacteria. At low residual ammonium concentrations, the decrease in anammox activity in situ led to an increase in nitrite availability for nitrite oxidation, facilitating the activation of NOB despite the dissolved oxygen limitation(0.15–0.35 mg/L) for NOB persisting throughout the operation. Therefore, the deterioration of mainstream PN/A at low residual ammonium was primarily triggered by a decline in anammox activity in situ. This study provides novel insights into the optimized design of mainstream PN/As in engineering applications. 展开更多
关键词 Mainstream partial nitritation/anammox Residual ammonium Granular sludge Comammox
原文传递
Achieving nitritation at low temperatures using free ammonia inhibition on Nitrobacter and real-time control in an SBR treating landfill leachate 被引量:20
10
作者 Hongwei Sun Yongzhen Peng +1 位作者 Shuying Wang Juan Ma 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第4期157-163,共7页
Free ammonia(FA) inhibition on nitrite-oxidized bacteria(NOB) and real-time control are used to achieve nitrogen removal from landfill leachate via nitrite pathway at low temperatures in sequencing batch reactor. ... Free ammonia(FA) inhibition on nitrite-oxidized bacteria(NOB) and real-time control are used to achieve nitrogen removal from landfill leachate via nitrite pathway at low temperatures in sequencing batch reactor. The inhibition of FA on NOB activity during the aerobic period was prolonged using real-time control. The degree of nitrite accumulation was monitored along with variations of the ammonia-oxidizing bacteria and NOB population using fluorescence in situ hybridization techniques. It is demonstrated that the end-point of ammonia oxidization is detected from the on-line measured dissolved oxygen,oxidization–reduction potential, and p H signals, which could avoid the loss the FA inhibition on NOB caused by excess aeration. At low temperature(13.0–17.6°C), the level of nitrite pathway rapidly increased from 19.8% to 90%, suggesting that nitritation was successfully started up at low temperature by applying syntrophic association of the FA inhibition and real-time control, and then this high level of nitrite pathway was stably maintained for as long as 233 days. Mechanism analysis shows that the establishment of nitritation was primarily the result of predominant ammonia-oxidizing bacteria developed in the nitrifying bacteria population compared to NOB. This was mainly due to a gradual reduction of nitrite amount that is available to provide energy for the growth of NOB,eventually leading to the elimination of NOB from the bacterial clusters in sequencing batch reactor sludge system. 展开更多
关键词 Landfill leachate nitritation Low temperature Free ammonia Inhibition AOB and NOB
原文传递
Stable partial nitritation of mature landfill leachate in a continuous flow bioreactor:Long-term performance,microbial community evolution,and mechanisms 被引量:2
11
作者 Xiaoling Hu Jianyang Song +9 位作者 Yantong Ji Chaojing Li Jia Wei Wanlin Lyu Bin Wang Wenbin Guo Rongfan Chen Hongyu Wang Dao Zhou Qian Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第11期255-262,共8页
A continuous flow bioreactor was operated for 300 days to investigate partial nitritation(PN)of mature landfill leachate,establishing the long-term performance of the system in terms of the microbial community composi... A continuous flow bioreactor was operated for 300 days to investigate partial nitritation(PN)of mature landfill leachate,establishing the long-term performance of the system in terms of the microbial community composition,evolution,and interactions.The stable operation phase(31-300 d)began after a 30 days of start-up period,reaching an average nitrite accumulation ratio(NAR)of 94.43%and a ratio of nitrite nitrogen to ammonia nitrogen(NO_(2)^(−)-N/NH_(4)^(+)-N)of 1.16.Some fulvic-like and humic-like compounds and proteins were effectively degraded in anaerobic and anoxic tanks,which was consistent with the corresponding abundance of methanogens and syntrophic bacteria in the anaerobic tank,and organic matter degrading bacteria in the anoxic tank.The ammonia-oxidizing bacteria(AOB)Nitrosomonas was found to be the key functional bacteria,exhibiting an increase in abundance from 0.27%to 6.38%,due to its collaborative interactions with organic matter degrading bacteria.In-situ inhibition of nitrite-oxidizing bacteria(NOB)was achieved using a combination of free ammonia(FA)and free nitrous acid(FNA),low dissolved oxygen(DO)with fewer bioavailable organics conditions were employed to maintain stable PN and a specific ratio of NO_(2)^(−)-N/NH_(4)^(+)-N,without an adverse impact on AOB.The synergistic relationships between AOB and both denitrifying bacteria and organic matter degrading bacteria,were found to contribute to the enhanced PN performance and microbial community structure stability.These findings provide a theoretical guidance for the effective application of PN-Anammox for mature landfill leachate treatment. 展开更多
关键词 Partial nitritation Mature landfill leachate Microbial community NITROSOMONAS Continuous flow bioreactor
原文传递
The nitritation performance of biofilm reactor for treating domestic wastewater under high dissolved oxygen 被引量:7
12
作者 Zhaoming Zheng Zebing Li +5 位作者 Jing Ma Jia Du Guanghui Chen Wei Bian Jun Li Baihang Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第4期267-274,共8页
The objective of this study was to investigate the nitritation performance in a biofilm reactor for treating domestic wastewater.The reactor was operated in continuous feed mode from phases 1 to 3.The dissolved oxygen... The objective of this study was to investigate the nitritation performance in a biofilm reactor for treating domestic wastewater.The reactor was operated in continuous feed mode from phases 1 to 3.The dissolved oxygen(DO)was controlled at 3.5–7 mg/L throughout the experiment.The biofilm reactor showed excellent nitritation performance after the inoculation of nitrifying sludge,with the hydraulic retention time being reduced from 24 to 7 hr.Above 90%nitrite accumulation ratio(NAR)was maintained in phase 1.Afterwards,nitratation occurred with the low NH4^+–N concentration in the reactor.The improvement of NH4^+–N concentration to 20–35 mg/L had a limited effect on the recovery of nitritation.However,nitritation recovered rapidly when sequencing batch feed mode was adopted in phase 4,with the effluent NH4^+-N concentration above 7 mg/L.The improvement of ammonia oxidizing bacteria(AOB)activity and the combined inhibition effect of free ammonia(FA)and free nitrous acid(FNA)on the nitrite oxidizing bacteria(NOB)were two key factors for the rapid recovery of nitritation.Sludge activity was obtained in batch tests.The results of batch tests had a good relationship with the long term operation performance of the biofilm reactor. 展开更多
关键词 nitritation High dissolved oxygen Domestic wastewater Biofilm reactor Control measures
原文传递
The performance of a combined nitritation–anammox reactor treating anaerobic digestion supernatant under various C/N ratios 被引量:5
13
作者 Jian Zhao Jiane Zuo +1 位作者 Jia Lin Peng Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第4期207-214,共8页
A combined nitritation–anammox reactor was developed to treat the digestion supernatant under various C/N ratios. Due to the difficulties for heterotroph to utilize the refractory organics, the reactor presented rela... A combined nitritation–anammox reactor was developed to treat the digestion supernatant under various C/N ratios. Due to the difficulties for heterotroph to utilize the refractory organics, the reactor presented relatively stable performance with increasing supernatant addition. Nevertheless, the adverse effects of supernatant would accumulate during the long-term operation and thus weakened the activity and shock resistance of microbes,which further led to the gradual decrease of reactor performance after 92 days' operation.Under this circumstance, supernatant with volatile fatty acids(VFAs) residuals was further introduced into the reactor to investigate the performance of combined nitritation–anammox process with VFA addition. With the appearance of VFAs, the nitrogen removal performance gradually restored and the reactor finally achieved stable and efficient performance with C/N ratio of 0.35. The VFA residuals within 150 mg/L in the supernatant served as the extra electron donors and stimulated the heterotrophic denitrification process, which was vital for the enhancement of reactor. The nitrogen removal rate and total nitrogen removal efficiency reached 0.49 kg N/(m^3·day) and 88.8% after 140 days' operation, respectively. The combined nitritation–anammox reactor was proved suitable to treat digestion supernatant. 展开更多
关键词 Combined nitritation–anammox Anaerobic digestion supernatant C/N ratios Volatile fatty acids
原文传递
Nitrogen-cycling processes under long-term compound heavy metal(loids)pressure around a gold mine:Stimulation of nitrite reduction 被引量:1
14
作者 Xuesong Hu Xiaoxia Liu +1 位作者 Shuo Zhang Caihong Yu 《Journal of Environmental Sciences》 2025年第1期571-581,共11页
Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This ... Mining and tailings deposition can cause serious heavy metal(loids)pollution to the surrounding soil environment.Soil microorganisms adapt their metabolism to such conditions,driving alterations in soil function.This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids)exposure.The results showed that the diversity and abundance of nitrogen-cyclingmicroorganisms showed negative feedback to heavy metal(loids)concentrations.Denitrifying microorganisms were shown to be the dominant microorganisms with over 60%of relative abundance and a complex community structure including 27 phyla.Further,the key bacterial species in the denitrification process were calculated using a random forest model,where the top three key species(Pseudomonas stutzei,Sphingobium japonicum and Leifsonia rubra)were found to play a prominent role in nitrite reduction.Functional gene analysis and qPCR revealed that nirK,which is involved in nitrite reduction,significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%.The experimental results confirmed that the activity of nitrite reductase(Nir)encoded by nirK in the soil was increased at high concentrations of heavy metal(loids).Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids),the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species.The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids). 展开更多
关键词 N cycle Nitrite reduction Nitrite reductase METAGENOME Key species
原文传递
Corrigendum to“Efficient and selective photocatalytic nitrite reduction to N_(2) through CO_(2) anion radical by eco-friendly tartaric acid activation”[Chinese Chemical Letters 35(2024)109639]
15
作者 Jingtao Bi Yupeng Cheng +3 位作者 Mengmeng Sun Xiaofu Guo Shizhao Wang Yingying Zhao 《Chinese Chemical Letters》 2025年第7期659-659,共1页
The authors regret<an error occurred regarding the spelling of the author’s name in the final published manuscript.The correct spelling is Jingtao Bi,but it was mistakenly published as Jingtai Bi.We hereby request... The authors regret<an error occurred regarding the spelling of the author’s name in the final published manuscript.The correct spelling is Jingtao Bi,but it was mistakenly published as Jingtai Bi.We hereby request to correct the name to Jingtao Bi as originally intended.>.The authors would like to apologize for any inconvenience caused. 展开更多
关键词 author name correction spelling error nitrite N jingtao bi tartaric acid activation CORRECTION photocatalytic nitrite reduction CO anion radical
原文传递
Remarkable fluorescence enhancement of acridine orange and rhodamine B through immobilization on zirconia nanotube array film and its application on nitrite sensing
16
作者 Dong Liu Xixin Wang +1 位作者 Dongxin Liu Jianling Zhao 《Journal of Materials Science & Technology》 2025年第5期26-37,共12页
Zirconia nanotube array films(ZNAF)prepared by anodic oxidation method were used as immobilization materials for acridine orange(AO),rhodamine B(RB)and AO-RB systems.A comparative study on their fluorescence emission ... Zirconia nanotube array films(ZNAF)prepared by anodic oxidation method were used as immobilization materials for acridine orange(AO),rhodamine B(RB)and AO-RB systems.A comparative study on their fluorescence emission intensity,fluorescence resonance energy transfer(FRET)and fluorescence detection of nitrite in aqueous solutions and on immobilization films with ZNAF as carriers was carried out.Results demonstrate that the solution pH values and immobilization on ZNAF have a great influence on the per-formance of these fluorescent molecules.Compared with aqueous solutions,the fluorescence emission in-tensity of AO and RB is considerably increased by immobilization,which is 8.0 and 4.2 times higher than the original,respectively.The energy transfer efficiency(E)of the AO-RB system increases from 40.9%to 84.8%by loading it on ZNAF.Moreover,after immobilization onto ZNAF,the fluorescence detection performance of nitrite is also significantly improved.The limit of detection decreases from 0.95 ng/mL to 0.22 ng/mL and the sensitivity increases from 939.18 to 15,031.68 mL/μg through loading AO onto ZNAF. 展开更多
关键词 ZrO2 nanotube arrays Acridine orange Rhodamine B NITRITE Detection
原文传递
Modulation of the electronic structure of CoP active sites by Er-doping for nitrite reduction for ammonia electrosynthesis
17
作者 Donglin Zhao Keyu Zhou +3 位作者 Li Zhan Guangyin Fan Yan Long Shuyan Song 《Chinese Journal of Catalysis》 2025年第3期299-310,共12页
The electrochemical conversion of toxic nitrite(NO_(2)-)is a promising approach for the simultaneous removal of nitrogen contaminants and synthesis of ammonia(NH_(3)).In this study,we present the Er-doping-induced ele... The electrochemical conversion of toxic nitrite(NO_(2)-)is a promising approach for the simultaneous removal of nitrogen contaminants and synthesis of ammonia(NH_(3)).In this study,we present the Er-doping-induced electronic modulation of CoP integrated with nitrogen-doped carbon(CN)nanosheets supported on a titanium mesh(Er-CoP@NC/TM)for the electrocatalytic NO_(2)-reduction reaction(eNO_(2)-RR)for NH_(3)synthesis.The catalyst demonstrates a high Faraday efficiency of 97.08±2.22%and a high yield of 2087.60±17.10μmol h^(-1)cm^(-2)for NH_(3)production.Characterization and theoretical calculations revealed that Er-doping facilitated the electronic modulation of CoP in Er-CoP@NC/TM,which regulated the adsorption behaviors of intermediates and was the rate-limiting step for the eNO_(2)-RR,thereby enhancing the electrocatalytic performance.Quenching experiments and electron paramagnetic resonance tests suggest that both direct electrocatalytic reduction by active hydrogen and electron transfer are critical for the eNO_(2)-RR for NH_(3)synthesis.Furthermore,Er-CoP@NC/TM exhibited high performance across a wide range of NO_(2)-concentrations(0.05-0.1 mol L^(-1))and pH values(4-13).In addition,the catalyst demonstrated strong resistance to anions and a long cycle life in simulated wastewater environments.This study offers a powerful approach for the remediation of NO_(2)-wastewater and recovery of valuable inorganic compounds. 展开更多
关键词 ELECTROCATALYSIS Nitrite reduction Ammonia production Cobalt phosphide Er-doping
在线阅读 下载PDF
Corrigendum to“Exploring the HONO source during the COVID-19 pandemic in a megacity in China”[Journal of Environmental Sciences Volume 149(2025)616-627]
18
作者 Mingkai Wang Shenbo Wang +6 位作者 Ruiqin Zhang Minghao Yuan Yifei Xu Luqi Shang Xinshuai Song Xinyuan Zhang Yunxiang Zhang 《Journal of Environmental Sciences》 2025年第10期894-894,共1页
The authors regret that in 1.2.Instruments section of the article,when describing the principle of TiH300,the original content of“Briefly,ambient HONO was first absorbed by deionized water in a two-channel stripping ... The authors regret that in 1.2.Instruments section of the article,when describing the principle of TiH300,the original content of“Briefly,ambient HONO was first absorbed by deionized water in a two-channel stripping coil.The absorbed liquid nitrite was mixed with sulfanilamide,N-(1-naphthyl)-ethylenediamine dihydrochloride,and hydrogen chloride solution to form the azo dye derivative.” 展开更多
关键词 MEGACITY hydrogen chloride azo dye derivative deionized water HONO China liquid nitrite SOURCE
原文传递
Modulating the coordination environment of cobalt porphyrins for enhanced electrochemical nitrite reduction to ammonia
19
作者 Jingwei Han Hai Sun +5 位作者 Fengkun Tian Wenwen Zhang Zonghang Zhang Ping She Jun-Sheng Qin Heng Rao 《Carbon Energy》 2025年第1期25-35,共11页
Electrocatalytic reduction of nitrate pollutants to produce ammonia offers an effective approach to realizing the artificial nitrogen cycle and replacing the energyintensive Haber-Bosch process.Nitrite is an important... Electrocatalytic reduction of nitrate pollutants to produce ammonia offers an effective approach to realizing the artificial nitrogen cycle and replacing the energyintensive Haber-Bosch process.Nitrite is an important intermediate product in the reduction of nitrate to ammonia.Therefore,the mechanism of converting nitrite into ammonia warrants further investigation.Molecular cobalt catalysts are regarded as promising for nitrite reduction reactions(NO_(2)^(−)RR).However,designing and controlling the coordination environment of molecular catalysts is crucial for studying the mechanism of NO_(2)^(−)RR and catalyst design.Herein,we develop a molecular platform of cobalt porphyrin with three coordination microenvironments(Co-N_(3)X_(1),X=N,O,S).Electrochemical experiments demonstrate that cobalt porphyrin with O coordination(CoOTPP)exhibits the lowest onset potential and the highest activity for NO_(2)^(−)RR in ammonia production.Under neutral,nonbuffered conditions over a wide potential range(−1.0 to−1.5 V versus AgCl/Ag),the Faradaic efficiency of nearly 90%for ammonia was achieved and reached 94.5%at−1.4 V versus AgCl/Ag,with an ammonia yield of 6,498μgh^(−1)and a turnover number of 22,869 at−1.5V versus AgCl/Ag.In situ characterization and density functional theory calculations reveal that modulating the coordination environment alters the electron transfer mode of the cobalt active center and the charge redistribution caused by the break of the ligand field.Therefore,this results in enhanced electrochemical activity for NO_(2)^(−)RR in ammonia production.This study provides valuable guidance for designing adjustments to the coordination environment of molecular catalysts to enhance catalytic activity. 展开更多
关键词 coordination environment electrocatalytic nitrite reduction heterogeneous catalysis molecular catalyst
在线阅读 下载PDF
Polyethyleneimine modified Au core Rh shell nanodendrites for light-promoted nitrite reduction reaction at low concentration
20
作者 Zhe Wang Xiaohui Wang +6 位作者 Mengzhu Yun Xinyao Shi Xue Xiao Yan Liu Fan Yang Yucheng Jiang Yu Chen 《Journal of Energy Chemistry》 2025年第4期400-407,共8页
Ammonia(NH_(3))is a fundamental chemical in agriculture and an ideal hydrogen carrier.Consequently,NH_(3)synthesis strategies with high efficiency,energy conservation,environmental friendliness,and sustainability are ... Ammonia(NH_(3))is a fundamental chemical in agriculture and an ideal hydrogen carrier.Consequently,NH_(3)synthesis strategies with high efficiency,energy conservation,environmental friendliness,and sustainability are desired eminently.The nitrite(NO_(2)^(-))reduction reaction(NO_(2-)RR)to NH_(3)offers a feasibly low-energy consumption and continuable approach to replace industrial NH_(3)synthesis.Herein,polyethyleneimine(PEI)modified Au core Rh shell nanodendrites(Au@Rh-NDs)nanohybrid(Au@Rh-NDs/PEI)with branched structure is synthesized,which achieves the high NH_(3)yield(1.68 mg h^(-1)mg_(cat)^(-1))and Faradaic efficiency(FE)of 95.86%for NO_(2)^(-)-RR at-0.39 V potential in neutral electrolyte.Particularly,the introduction of PEI significantly enhances the electroactivity of Au@Rh-NDs at low concentration of 1 mM NaNO_(2),which originates from the enrichment function of PEI for NO_(2)^(-)-ion.In addition,the Au basement permits the sustainable solar power to expedite the NO_(2)^(-)-RR at Au@Rh-NDs/PEI owing to the localized surface plasmon resonance(LSPR)of the Au core substrate.This work may provide an admissible tactic to build excellent catalysts on account of organic molecule-mediated interfacial engineering in a variety of fields of catalysis and electrocatalysis. 展开更多
关键词 AMMONIA Shell-core structure Interfacial engineering Nitrite reduction reaction Photothermal and photoelectric effect
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部