Quantum computing is a rapidly growing field that has received a significant amount of support in the past decade in industry and academia.Several physical quantum computers are now freely available to use through clo...Quantum computing is a rapidly growing field that has received a significant amount of support in the past decade in industry and academia.Several physical quantum computers are now freely available to use through cloud services,with some implementations supporting upwards of hundreds of qubits.These advances mark the beginning of the noisy intermediate-scale quantum(NISQ)era of quantum computing,paving the way for hybrid quantum-classical(HQC)systems.This work provides an introductory overview of gate-model quantum computing through the Visual IoT/Robotics Programming Language Environment and a survey of recent applications of NISQ era quantum computers to HQC machine learning.展开更多
In the current noisy intermediate-scale quantum(NISQ)era,a single quantum processing unit(QPU)is insufficient to implement large-scale quantum algorithms;this has driven extensive research into distributed quantum com...In the current noisy intermediate-scale quantum(NISQ)era,a single quantum processing unit(QPU)is insufficient to implement large-scale quantum algorithms;this has driven extensive research into distributed quantum computing(DQC).DQC involves the cooperative operation of multiple QPUs but is concurrently challenged by excessive communication complexity.To address this issue,this paper proposes a quantum circuit partitioning method based on spectral clustering.The approach transforms quantum circuits into weighted graphs and,through computation of the Laplacian matrix and clustering techniques,identifies candidate partition schemes that minimize the total weight of the cut.Additionally,a global gate search tree strategy is introduced to meticulously explore opportunities for merged transfer of global gates,thereby minimizing the transmission cost of distributed quantum circuits and selecting the optimal partition scheme from the candidates.Finally,the proposed method is evaluated through various comparative experiments.The experimental results demonstrate that spectral clustering-based partitioning exhibits robust stability and efficiency in runtime in quantum circuits of different scales.In experiments involving the quantum Fourier transform algorithm and Revlib quantum circuits,the transmission cost achieved by the global gate search tree strategy is significantly optimized.展开更多
Quantum power system state estimation(QPSSE)offers an inspiring direction for tackling the challenge of state estimation through quantum computing.Nevertheless,the current bottlenecks originate from the scarcity of pr...Quantum power system state estimation(QPSSE)offers an inspiring direction for tackling the challenge of state estimation through quantum computing.Nevertheless,the current bottlenecks originate from the scarcity of practical and scalable QPSSE methodologies in the noisy intermediate-scale quantum(NISQ)era.This paper devises a NISQ−QPSSE algorithm that facilitates state estimation on real NISQ devices.Our new contributions include:(1)A variational quantum circuit(VQC)-based QPSSE formulation that empowers QPSSE analysis utilizing shallow-depth quantum circuits;(2)A variational quantum linear solver(VQLS)-based QPSSE solver integrating QPSSE iterations with VQC optimization;(3)An advanced NISQ-compatible QPSSE methodology for tackling the measurement and coefficient matrix issues on real quantum computers;(4)A noise-resilient method to alleviate the detrimental effects of noise disturbances.The encouraging test results on the simulator and real-scale systems affirm the precision,universal-ity,and scalability of our QPSSE algorithm and demonstrate the vast potential of QPSSE in the thriving NISQ era.展开更多
基金The research is supported by Arizona State University faculty funding.
文摘Quantum computing is a rapidly growing field that has received a significant amount of support in the past decade in industry and academia.Several physical quantum computers are now freely available to use through cloud services,with some implementations supporting upwards of hundreds of qubits.These advances mark the beginning of the noisy intermediate-scale quantum(NISQ)era of quantum computing,paving the way for hybrid quantum-classical(HQC)systems.This work provides an introductory overview of gate-model quantum computing through the Visual IoT/Robotics Programming Language Environment and a survey of recent applications of NISQ era quantum computers to HQC machine learning.
基金supported by the National Natural Science Foundation of China(Grant No.62072259)in part by the Natural Science Foundation of Jiangsu Province(Grant No.BK20221411)+1 种基金the PhD Start-up Fund of Nantong University(Grant No.23B03)the Postgraduate Research&Practice Innovation Program of School of Information Science and Technology,Nantong University(Grant No.NTUSISTPR2405).
文摘In the current noisy intermediate-scale quantum(NISQ)era,a single quantum processing unit(QPU)is insufficient to implement large-scale quantum algorithms;this has driven extensive research into distributed quantum computing(DQC).DQC involves the cooperative operation of multiple QPUs but is concurrently challenged by excessive communication complexity.To address this issue,this paper proposes a quantum circuit partitioning method based on spectral clustering.The approach transforms quantum circuits into weighted graphs and,through computation of the Laplacian matrix and clustering techniques,identifies candidate partition schemes that minimize the total weight of the cut.Additionally,a global gate search tree strategy is introduced to meticulously explore opportunities for merged transfer of global gates,thereby minimizing the transmission cost of distributed quantum circuits and selecting the optimal partition scheme from the candidates.Finally,the proposed method is evaluated through various comparative experiments.The experimental results demonstrate that spectral clustering-based partitioning exhibits robust stability and efficiency in runtime in quantum circuits of different scales.In experiments involving the quantum Fourier transform algorithm and Revlib quantum circuits,the transmission cost achieved by the global gate search tree strategy is significantly optimized.
基金supported in part by the National Science Foundation under Grant No.ITE-2134840.This work relates to Department of Navy award N00014-23-1-2124 issued by the Office of Naval Research.The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein.
文摘Quantum power system state estimation(QPSSE)offers an inspiring direction for tackling the challenge of state estimation through quantum computing.Nevertheless,the current bottlenecks originate from the scarcity of practical and scalable QPSSE methodologies in the noisy intermediate-scale quantum(NISQ)era.This paper devises a NISQ−QPSSE algorithm that facilitates state estimation on real NISQ devices.Our new contributions include:(1)A variational quantum circuit(VQC)-based QPSSE formulation that empowers QPSSE analysis utilizing shallow-depth quantum circuits;(2)A variational quantum linear solver(VQLS)-based QPSSE solver integrating QPSSE iterations with VQC optimization;(3)An advanced NISQ-compatible QPSSE methodology for tackling the measurement and coefficient matrix issues on real quantum computers;(4)A noise-resilient method to alleviate the detrimental effects of noise disturbances.The encouraging test results on the simulator and real-scale systems affirm the precision,universal-ity,and scalability of our QPSSE algorithm and demonstrate the vast potential of QPSSE in the thriving NISQ era.