In this study, SnNb_2O_6 and Sn_2Nb_2O_7 nanosheets are synthetized via microwave assisted hydrothermal method, and innovatively employed as anode materials for lithium-ion battery. The SnNb_2O_6 electrode exhibits hi...In this study, SnNb_2O_6 and Sn_2Nb_2O_7 nanosheets are synthetized via microwave assisted hydrothermal method, and innovatively employed as anode materials for lithium-ion battery. The SnNb_2O_6 electrode exhibits high reversible capacity and excellent cycling stability(498 mAh/g at 0.1 A/g after 100 cycles),which is superior to that of Sn_2Nb_2O_7 electrode(173 mAh/g at 0.1 A/g after 100 cycles). Even increasing the current density to 2.0 A/g, the SnNb_2O_6 electrode still delivers a reversible capacity up to 306 mAh/g.The rate performance of the SnNb_2O_6 electrode is also better than that of Sn_2 Nb_2O_7 electrode at different current densities from 0.1 A/g to 2.0 A/g. The enhanced electrochemical performance of SnNb_2O_6 nanosheets can be attributed to the unique layered structure, which is conducive to the diffusion of the lithium ions and the migration of electrons during discharge/charge.展开更多
One-dimensional(1D)nanostructures of perovskite piezoelectrics exhibit unique properties that distinct them from those of their bulk and thin-film counterparts.These 1D nanostructures feature cantilever-like flexibili...One-dimensional(1D)nanostructures of perovskite piezoelectrics exhibit unique properties that distinct them from those of their bulk and thin-film counterparts.These 1D nanostructures feature cantilever-like flexibility and elasticity,a relatively high piezoelectric constant,good stability and easiness of integration,making them highly promising for applications in energy harvesting,pressure sensing,piezo-catalysis,nano-actuators and smart human-machine interfaces.Among them,(K,Na)NbO_(3)(KNN)has been regarded as one of the most promising lead-free perovskite piezoelectrics owing to its excellent biocompatibility,good piezoelectric performance,and high Curie temperature.Recently,significant efforts have been made to develop high-performance 1D KNN nanostructures(1D KNNs).However,the controllable growth and enhancement in piezoelectric performance of 1D KNNs remain challenging.In this work,we systematically re-examine the effective approaches for the growth of 1D KNNs and explore their unique properties.Key strategies for structural designs and performance optimization are proposed based on the recent progress,along with perspectives in developing novel functionalities and micro/nano-devices such as energy harvesters,information storage,electronic skins,biomedical applications.展开更多
Rare-earth tantalates and niobates(REjTaO7 and REjNbO7)have been considered as promising candidate thermal barrier coating(TBC)materials in next generation gas-turbine engines due to their ultra-low thermal conductivi...Rare-earth tantalates and niobates(REjTaO7 and REjNbO7)have been considered as promising candidate thermal barrier coating(TBC)materials in next generation gas-turbine engines due to their ultra-low thermal conductivity and better thermal stability than yttria-stabilized zirconia(YSZ).However,the low Vickers hardness and toughness are the main shortcomings of RE;TaO-and REjNbOr that limit their applications as TBC materials.To increase the hardness,high entropy(Yu3Ybu3Er/3)sTaOr,(Y13YbnErns)NbO,and(Sm1/6Eu1/6Y 1/6Yb1/6Lu1/6Er1/6)3(Nb1/2Ta1/2)O7 are designed and synthesized in this study.These high entropy ceramics exhibit high Vickers hardness(10.912.0 GPa),close thermal expansion coefficients to that of single-principal-component RE3TaO,and RE;NbO,(7.9×10^-6-10.8×10-6 C-1 at room temperature),good phase stability,and good chemical compatibility with thermally grown Al2O3,which make them promising for applications as candidate TBC materials.展开更多
In the upcoming 6-generation(6G)revolution,the achievement of low power consumption has become a key objective in research concerning terahertz devices.As an important component of passive devices,there are very few l...In the upcoming 6-generation(6G)revolution,the achievement of low power consumption has become a key objective in research concerning terahertz devices.As an important component of passive devices,there are very few low-loss dielectric ceramics in the terahertz range.To elucidate the mechanism of loss and promote the application of microwave dielectric ceramics for future 6G technology(covering microwave and terahertz frequencies),the terahertz responses of ANb_(2)O_(6)(A=Zn,Co,Mn,and Ni)columbite niobates were studied.The influences of magnetic loss on the Qxf values in the microwave range with different transition metal ions in the A-site were reasonably analyzed.Moreover,due to the weakened magnetic relaxation properties in the terahertz range,the samples all exhibited low loss and approximate transparency,especially for MnNb_(2)O_(6) and NiNb_(2)O_(6)(tano<0.01 and absorption coefficient<10 cm^(-1) below 1.2 THz),which subverted the definition of traditional low-loss microwave dielectric ceramics.Ultimately,based on Mie theory,we designed a prototypical broadband metamaterial reflector to validate the applicability of the ANb_(2)O_(6) system in the terahertz band,which is highly important for the development of terahertz ceramic-based passive devices.展开更多
Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properti...Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properties.A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN,which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.In this review paper,we provide an overview of the domain engineering techniques developed for LN,their principles,and the typical domain size and pattern uniformity they provide,which is important for devices that require high-resolution domain patterns with good reproducibility.It also highlights each technique's benefits,limitations,and adaptability for an application,along with possible improvements and future advancement prospects.Further,the review provides a brief overview of domain visualization methods,which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform,which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.展开更多
The structural phase transitions and ferroelectric dynamics of lead-free AgNbO_(3)have attracted consid-erable attention owing to their potential in energy-storage device applications.Here,we examine the impact of Li+...The structural phase transitions and ferroelectric dynamics of lead-free AgNbO_(3)have attracted consid-erable attention owing to their potential in energy-storage device applications.Here,we examine the impact of Li+doping on the phase transitions and polarization behavior of(Ag_(1-x)Li_(x))NbO_(3)(x=0-7%)ceramics through comprehensive dielectric and ferroelectric analyses.Rietveld refinement reveals a Li+-induced phase transition from Pbcm to R3c,with x=5%and x=6%compositions near the morphotropic phase boundary(MPB).Dielectric anomalies identify key characteristic temperatures,supporting the con-struction of a low-field phase diagram.High-field studies uncover a direct relationship between phase structure and polarization behavior,culminating in a high-field phase diagram.Near-MPB compositions exhibit distinct structural states,elucidating the mechanisms of reversible and irreversible phase transi-tions.This work provides a comprehensive explanation of the evolution of hysteresis loop profiles,capturing their progression from double hysteresis loops to square loops and their subsequent reversion to double loops under varying electric field and temperature conditions.These temperature-composition(T-x)and temperature-electric field(T-E)phase diagrams provide a robust framework for understanding phase evolution,offering critical insights into optimizing AgNbO_(3)-based ceramics for advanced functional applications.展开更多
We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the...We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the conventional telecom band.展开更多
Due to its broken out-of-plane symmetry,z-cut periodically poled lithium niobate(PPLN)has exhibited ultrahigh second-order optical nonlinearity.Precise quantification of the domain structure of z-cut PPLN plays a crit...Due to its broken out-of-plane symmetry,z-cut periodically poled lithium niobate(PPLN)has exhibited ultrahigh second-order optical nonlinearity.Precise quantification of the domain structure of z-cut PPLN plays a critical role during poling fabrication.To enhance the imaging detection efficiency of the domain structure in z-cut PPLN,we have developed a second-harmonic generation microscope system specifically designed to produce a longitudinal electric field in foci for the imaging domain inversion.We demonstrated that imaging using a longitudinal electric field can achieve a contrast ratio enhancement by a factor of 1.77,showing high imaging efficiency and making the proposed method suitable for in situ monitoring of the z-cut PPLN poling process.展开更多
Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices.However,the nanofabrication of these devices requires high-quali...Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices.However,the nanofabrication of these devices requires high-quality etching of these thin films,necessitating the long-term development of the fabrication recipe and specialized equipment.Here we present a strong-confinement low-index-rib-loaded waveguide structure as the building block of various passive and active integrated photonic devices based on novel thin films.By optimizing this low-index-rib-loaded waveguide structure without etching the novel thin film,we can simultaneously realize strong optical power confinement in the thin film,low optical propagation loss,and strong electro-optic coupling for the fundamental transverse electric mode.Based on our low-index-rib-loaded waveguide structure,we designed and fabricated a thin film lithium niobate(TFLN)modulator,featuring a 3-dB modulation bandwidth over 110 GHz and a voltage-length product as low as 2.26 V·cm,which is comparable to those of the state-of-the-art etched TFLN modulators.By alleviating the etching of novel thin films,the proposed structure opens up new ways of fast proof-of-concept demonstration and even mass production of high-performance integrated electro-optic and nonlinear devices based on novel thin films.展开更多
Controlling the construction of physical colors on the surfaces of transparent dielectric crystals is crucial for surface coloration and anti-counterfeiting applications.In this study,we present a novel approach to cr...Controlling the construction of physical colors on the surfaces of transparent dielectric crystals is crucial for surface coloration and anti-counterfeiting applications.In this study,we present a novel approach to creating stable physical colors on the surface of lithium niobate crystals by combining gold ion implantation with laser direct writing technologies.The interaction between the laser,the implanted gold nanoparticles,and the crystal lattice induces permanent,localized modifications on the crystal surface.By fine-tuning the laser direct writing parameters,we reshaped the gold nanoparticles into spheres of varying sizes on the crystal surface,resulting in the display of red,green,blue,and pale-yellow colors.We investigated the influence of the implanted Au nanoparticles-particularly their localized surface plasmon resonances-on the modifications of the lithium niobate crystal lattice during the laser writing process using confocal Raman spectroscopy and high-resolution transmission electron microscopy.Our findings reveal that the embedded Au nanoparticles play a pivotal role in altering the conventional light-matter interaction between the crystal lattice and the laser,thereby facilitating the generation of surface colors.This work opens new avenues for the development of vibrant surface colors on transparent dielectric crystals.展开更多
Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bu...Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bulkiness of the device.In this work,we present a comprehensive theoretical and numerical investigation of the simultaneous generation and competition between the second harmonic waves(SHW)and the third harmonic waves(THW)in a single nonlinear crystal.Through analyzing both small-signal and large-signal regimes,we reveal the complex coupling mechanisms between SHW and THW generation processes.Using periodically poled lithium niobate as an example,we demonstrate that the relative conversion efficiencies between SHW and THW can be freely adjusted by controlling the input fundamental wave power.This work provides new insights for designing efficient frequency converters capable of generating both SHW and THW outputs with controllable intensity ratios.展开更多
Optical isolators,the photonic analogs of electronic diodes,are essential for ensuring the unidirectional flow of light in optical systems,thereby mitigating the destabilizing effects of back reflections.Thin-film lit...Optical isolators,the photonic analogs of electronic diodes,are essential for ensuring the unidirectional flow of light in optical systems,thereby mitigating the destabilizing effects of back reflections.Thin-film lithium niobate(TFLN),hailed as“the silicon of photonics,”has emerged as a pivotal material in the realm of chip-scale nonlinear optics,propelling the demand for compact optical isolators.We report a breakthrough in the development of a fully passive,integrated optical isolator on the TFLN platform,leveraging the Kerr effect to achieve an impressive 10.3 dB of isolation with a minimal insertion loss of 1.87 dB.Further theoretical simulations have demonstrated that our design,when applied to a microring resonator with a Q factor of 5×10^(6),can achieve 20 dB of isolation with an input power of merely 8 mW.This advancement underscores the immense potential of lithium niobate-based Kerr-effect isolators in propelling the integration and application of high-performance on-chip lasers,heralding a new era in integrated photonics.展开更多
High-average-power strong-field terahertz(THz)pulses,which are generated via the optical rectification of 100-W average-power ytterbium(Yb)lasers in a nonlinear crystal,have been used to study extreme physical phenome...High-average-power strong-field terahertz(THz)pulses,which are generated via the optical rectification of 100-W average-power ytterbium(Yb)lasers in a nonlinear crystal,have been used to study extreme physical phenomena and realize various applications.However,this THz generation method suffers from a trade-off in which high repetition rates lead to low optical-to-THz energy conversion efficiency,as well as the risk of damage to the crystals under high average pumping power.In this study,we demonstrate a high-averagepower,high-repetition-rate,strong-field THz source in lithium niobate driven by a 1030 nm,1 ps,2 mJ,100 kHz Yb femtosecond laser with a tilted-pulse front-pumping configuration.By characterizing two key experimental parameters,namely the pump spot size and pulse duration,we achieve,to the best of our knowledge,the highest THz average power of 104mW at 100 kHz,with a conversion efficiency of 0.1%and without any cooling operation at room temperature.In addition,a strong electric field of 421 kV/cm is achieved at 1 kHz.Our THz system directly demonstrates its potential capabilities in high-signal-to-noise spectroscopy,imaging,nondestructive testing,and relevant THz applications.展开更多
Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithiu...Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithium niobate waveguide amplifier achieving>10 dB off-chip(fiber-to-fiber)net gain and>20 mW fiber-output amplified power is demonstrated,thanks to the low-propagation-loss waveguides and robust waveguide edge-couplers prepared by the photolithography assisted chemomechanical etching technique.Systematic investigation on the fabricated waveguide amplifiers reveals remarkable optical gain around the peak wavelength of 1532 nm as well as the low fiber-coupling loss of-1.2 dB/facet.A fiber Bragg-grating based waveguide laser is further demonstrated using the fabricated waveguide amplifier as the external gain chip,which generates>2 mW off-chip power continuous-wave lasing around the gain peak at 1532 nm.The unambiguous demonstration of fiber-to-fiber net gain of the erbium-doped thinfilm lithium niobate(TFLN)waveguide amplifier as well as its external gain chip application will benefit diverse fields demanding scalable gain elements with highspeed tunability.展开更多
Microring resonators,as essential components of photonic integrated circuits,offer compact size,wavelength selectivity,and strong resonance effects,making them invaluable in optical computing,on-chip interconnects,and...Microring resonators,as essential components of photonic integrated circuits,offer compact size,wavelength selectivity,and strong resonance effects,making them invaluable in optical computing,on-chip interconnects,and quantum photonics.The proposal of the pulley-type microring enhances the coupling strength,but also brings about issues such as mode mismatch and the excitation of higher-order modes.Here,a lithium niobate microring resonator coupled with a pulley bus waveguide based on modified Euler curves is proposed.This Euler-modified pulley bus minimizes mode mismatch at bending junctions,effectively suppressing higher-order mode excitation.The design achieves a high Q factor(exceeding 105)and strong coupling efficiency(83%)within a compact structure of 70μm radius.Due to its simple structure and ease of fabrication,the Euler-modified pulley-type microring holds practical value for applications requiring high-quality microring resonators.展开更多
We present a compact optical delay line(ODL)with wide-range continuous tunability on thin-film lithium niobate platform.The proposed device integrates an unbalanced Mach-Zehnder interferometer(MZI)architecture with du...We present a compact optical delay line(ODL)with wide-range continuous tunability on thin-film lithium niobate platform.The proposed device integrates an unbalanced Mach-Zehnder interferometer(MZI)architecture with dual tunable couplers,where each coupler comprises two 2×2 multimode interferometers and a MZI phase-tuning section.Experimental results demonstrate continuous delay tuning from 0 to 293 ps through synchronized control of coupling coefficients,corresponding to a 4 cm path difference between interferometer arms.The measured delay range exhibits excellent agreement with theoretical predictions derived from ODL waveguide parameters.This result addresses critical challenges in integrated photonic systems that require precise temporal control,particularly for applications in optical communications and quantum information processing,where a wide tuning range is paramount.展开更多
NbC-Sn composite powder was successfully prepared from SnO2,Nb2O5and carbon by electrochemical reduction andcarbonization in CaCl2-NaCl molten salt at900°C.The reaction pathway was investigated by terminating ele...NbC-Sn composite powder was successfully prepared from SnO2,Nb2O5and carbon by electrochemical reduction andcarbonization in CaCl2-NaCl molten salt at900°C.The reaction pathway was investigated by terminating electrochemicalexperiments for various durations.The influence of carbon on the final products was considered.NbC particles were obtained byleaching the composite with acid.The results showed that the aggregated NbC-Sn composite powdev contained NbC particles about50-100nm and Sn particles about200nm.SnO2was reduced to Sn in the sintering process.Nb2O5was electrochemically reduced toNb in molten salt,experiencing some intermediate products of calcium niobates and niobium suboxides.Nb metal obtained wasconverted to NbC with assistance of carbon.The reduction of Nb oxides may be incomplete and Nb3Sn would be formed if carbon isinsufficient in the cathodic pellet.NbC with good dispersity is produced by leaching NbC-Sn with HCl.展开更多
Ferroelastic ABO4 type RETaO4 and RENbO4 ceramics(where RE stands for rare earth)are being investigated as promising thermal barrier coatings(TBCs),and the mechanical properties of RETaO4 have been found to be better ...Ferroelastic ABO4 type RETaO4 and RENbO4 ceramics(where RE stands for rare earth)are being investigated as promising thermal barrier coatings(TBCs),and the mechanical properties of RETaO4 have been found to be better than those of RENbO4.In this work,B-site substitution of tantalum(Ta)is used to optimize the thermal and mechanical properties of EuNbO4 fabricated through a solid-state reaction(SSR).The crystal structure is clarified by means of X-ray diffraction(XRD)and Raman spectroscopy;and the surface microstructure is surveyed via scanning electronic microscope(SEM).The Young’s modulus and the thermal expansion coefficient(TEC)of EuNbO4 are effectively increased;with respective maximum values of 169 GPa and 11.2×10^-6 K^-1(at 1200℃).The thermal conductivity is reduced to 1.52 W·K^-1·m^-1(at 700℃),and the thermal radiation resistance is improved.The relationship between the phonon thermal diffusivity and temperature was established in order to determine the intrinsic phonon thermal conductivity by eliminating the thermal radiation effects.The results indicate that the thermal and mechanical properties of EuNbO4 can be effectually optimized via the B-site substitution of Ta,and that this proposed material can be applied as a high-temperature structural ceramic in future.展开更多
ZnO-modified (Li, Na, K)NbO3 lead-free ceramics with a nominal composition of Li0.06(Na0.535K0.48)0.94NbO3+0.7mol% ZnO (LNKN-ZT) was synthesized normally at 930-1000℃. The Zn ions incorporated into the A-site at a hi...ZnO-modified (Li, Na, K)NbO3 lead-free ceramics with a nominal composition of Li0.06(Na0.535K0.48)0.94NbO3+0.7mol% ZnO (LNKN-ZT) was synthesized normally at 930-1000℃. The Zn ions incorporated into the A-site at a higher sintering temperaVare, which changed LNKN-Z7 to soft piezoelectric ceramics with the mechanical quality factor decreasing from 228 to 192. A phase transition from tetragonal to orthorhombic symmetry was identified by XRD analysis, and the corresponding calculation of lattice parameters was conducted at 970-980℃. Because of such transitional behavior and fine microstructure, the optimized values of piezoelectric coefficient, planar electromechanical coupling coefficient, and relative dielectric constant were obtained.展开更多
The complex dielectric constant of pure and cerium doped calcium-barium-niobate (CBN) was studied at frequencies 20 Hz ≤ f ≤ 1 MHz in the temperature range 300 K ≤ T ≤ 650 K and compared with the results for the w...The complex dielectric constant of pure and cerium doped calcium-barium-niobate (CBN) was studied at frequencies 20 Hz ≤ f ≤ 1 MHz in the temperature range 300 K ≤ T ≤ 650 K and compared with the results for the well known ferroelectric relaxor strontium-barium-niobate (SBN). By the analysis of the systematically taken temperature and frequency dependent measurements of the dielectric constant the phase transition characteristic of the investigated materials was evaluated. From the results it must be assumed that CBN shows a slightly diffuse phase transition without relaxor behavior. Doping with cerium yields a definitely different phase transition characteristic with some indications for a relaxor type ferroelectric material, which are common from SBN.展开更多
基金support of Project Supported by the Natural Science Foundation of China(Nos.51502163 and 51502165)Keypoint Research and Invention in Shaanxi Province of China(No.2017GY-186)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘In this study, SnNb_2O_6 and Sn_2Nb_2O_7 nanosheets are synthetized via microwave assisted hydrothermal method, and innovatively employed as anode materials for lithium-ion battery. The SnNb_2O_6 electrode exhibits high reversible capacity and excellent cycling stability(498 mAh/g at 0.1 A/g after 100 cycles),which is superior to that of Sn_2Nb_2O_7 electrode(173 mAh/g at 0.1 A/g after 100 cycles). Even increasing the current density to 2.0 A/g, the SnNb_2O_6 electrode still delivers a reversible capacity up to 306 mAh/g.The rate performance of the SnNb_2O_6 electrode is also better than that of Sn_2 Nb_2O_7 electrode at different current densities from 0.1 A/g to 2.0 A/g. The enhanced electrochemical performance of SnNb_2O_6 nanosheets can be attributed to the unique layered structure, which is conducive to the diffusion of the lithium ions and the migration of electrons during discharge/charge.
基金support by the Advanced Research and Technology Innovation Centre(ARTIC),through research project(ADT-RP2)supported by the National Natural Science Foundation of China(NSFC,Grant Nos.:U21A20500 and 52072115)+2 种基金the Natural Science Foundation of Hubei Province(Outstanding Youth Project,Grant No.2023AFA074)the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20230744)the Postdoctoral Innovation Research Program in Hubei Provence(Grant No.352899).
文摘One-dimensional(1D)nanostructures of perovskite piezoelectrics exhibit unique properties that distinct them from those of their bulk and thin-film counterparts.These 1D nanostructures feature cantilever-like flexibility and elasticity,a relatively high piezoelectric constant,good stability and easiness of integration,making them highly promising for applications in energy harvesting,pressure sensing,piezo-catalysis,nano-actuators and smart human-machine interfaces.Among them,(K,Na)NbO_(3)(KNN)has been regarded as one of the most promising lead-free perovskite piezoelectrics owing to its excellent biocompatibility,good piezoelectric performance,and high Curie temperature.Recently,significant efforts have been made to develop high-performance 1D KNN nanostructures(1D KNNs).However,the controllable growth and enhancement in piezoelectric performance of 1D KNNs remain challenging.In this work,we systematically re-examine the effective approaches for the growth of 1D KNNs and explore their unique properties.Key strategies for structural designs and performance optimization are proposed based on the recent progress,along with perspectives in developing novel functionalities and micro/nano-devices such as energy harvesters,information storage,electronic skins,biomedical applications.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.51672064 and 51972089).
文摘Rare-earth tantalates and niobates(REjTaO7 and REjNbO7)have been considered as promising candidate thermal barrier coating(TBC)materials in next generation gas-turbine engines due to their ultra-low thermal conductivity and better thermal stability than yttria-stabilized zirconia(YSZ).However,the low Vickers hardness and toughness are the main shortcomings of RE;TaO-and REjNbOr that limit their applications as TBC materials.To increase the hardness,high entropy(Yu3Ybu3Er/3)sTaOr,(Y13YbnErns)NbO,and(Sm1/6Eu1/6Y 1/6Yb1/6Lu1/6Er1/6)3(Nb1/2Ta1/2)O7 are designed and synthesized in this study.These high entropy ceramics exhibit high Vickers hardness(10.912.0 GPa),close thermal expansion coefficients to that of single-principal-component RE3TaO,and RE;NbO,(7.9×10^-6-10.8×10-6 C-1 at room temperature),good phase stability,and good chemical compatibility with thermally grown Al2O3,which make them promising for applications as candidate TBC materials.
基金This work was supported by the National Key R&D Program of China(No.2022YFB3806000)the Basic Science Center Project of National Natural Science Foundation of China(No.52388201)+2 种基金the National Natural ScienceFoundationof China(Nos.52202370 and 52172122)the China Postdoctoral Science Foundation(No.2023T160359)the Natural Science Foundation of Shandong Province(No.ZR2023QF040)。
文摘In the upcoming 6-generation(6G)revolution,the achievement of low power consumption has become a key objective in research concerning terahertz devices.As an important component of passive devices,there are very few low-loss dielectric ceramics in the terahertz range.To elucidate the mechanism of loss and promote the application of microwave dielectric ceramics for future 6G technology(covering microwave and terahertz frequencies),the terahertz responses of ANb_(2)O_(6)(A=Zn,Co,Mn,and Ni)columbite niobates were studied.The influences of magnetic loss on the Qxf values in the microwave range with different transition metal ions in the A-site were reasonably analyzed.Moreover,due to the weakened magnetic relaxation properties in the terahertz range,the samples all exhibited low loss and approximate transparency,especially for MnNb_(2)O_(6) and NiNb_(2)O_(6)(tano<0.01 and absorption coefficient<10 cm^(-1) below 1.2 THz),which subverted the definition of traditional low-loss microwave dielectric ceramics.Ultimately,based on Mie theory,we designed a prototypical broadband metamaterial reflector to validate the applicability of the ANb_(2)O_(6) system in the terahertz band,which is highly important for the development of terahertz ceramic-based passive devices.
基金supported by the Australian Research Council Centre of Excellence in Optical Microcombs for Breakthrough Science COMBS(CE230100006)the Australian Research Council grants DP220100488 and DE230100964funded by the Australian Government.
文摘Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properties.A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN,which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.In this review paper,we provide an overview of the domain engineering techniques developed for LN,their principles,and the typical domain size and pattern uniformity they provide,which is important for devices that require high-resolution domain patterns with good reproducibility.It also highlights each technique's benefits,limitations,and adaptability for an application,along with possible improvements and future advancement prospects.Further,the review provides a brief overview of domain visualization methods,which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform,which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices.
基金finically supported by the National Natural Science Foundation of China(Nos.52261135548,52302153,and 52402155)the China Postdoctoral Science Foundation(Nos.GZC20232075 and 2023M742767)+2 种基金The research was made possible by Russian Science Foundation(Project No 23-42-00116)The equipment of the Ural Center for Shared Use“Modern nanotech-nology”Ural Federal University(Reg.No2968)whichis supported by the Ministry of Science and Higher Education RF(Project No 075-15-2021-677)was usedThe SEM work was done at International Center for Dielectric Research(ICDR),Xi’an Jiaotong University,Xi’an,China.
文摘The structural phase transitions and ferroelectric dynamics of lead-free AgNbO_(3)have attracted consid-erable attention owing to their potential in energy-storage device applications.Here,we examine the impact of Li+doping on the phase transitions and polarization behavior of(Ag_(1-x)Li_(x))NbO_(3)(x=0-7%)ceramics through comprehensive dielectric and ferroelectric analyses.Rietveld refinement reveals a Li+-induced phase transition from Pbcm to R3c,with x=5%and x=6%compositions near the morphotropic phase boundary(MPB).Dielectric anomalies identify key characteristic temperatures,supporting the con-struction of a low-field phase diagram.High-field studies uncover a direct relationship between phase structure and polarization behavior,culminating in a high-field phase diagram.Near-MPB compositions exhibit distinct structural states,elucidating the mechanisms of reversible and irreversible phase transi-tions.This work provides a comprehensive explanation of the evolution of hysteresis loop profiles,capturing their progression from double hysteresis loops to square loops and their subsequent reversion to double loops under varying electric field and temperature conditions.These temperature-composition(T-x)and temperature-electric field(T-E)phase diagrams provide a robust framework for understanding phase evolution,offering critical insights into optimizing AgNbO_(3)-based ceramics for advanced functional applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.12192251,12334014,92480001,12134001,12304418,12274130,12274133,12474378,and 12404378)the National Key R&D Program of China(Grant Nos.2022YFA1404600 and 2022YFA1205100)+2 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(Grant No.2023nmc005)。
文摘We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the conventional telecom band.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFC3401100 and 2022YFF0712500)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)+2 种基金the National Natural Science Foundation of China(Grant Nos.12204017,12004012,12004013,12041602,91750203,91850111,and 92150301)the China Postdoctoral Science Foundation(Grant No.2020M680220 and 2020M680230)the Clinical Medicine Plus X-Young Scholars Project,Peking University,Fundamental Research Funds for the Central Universities.
文摘Due to its broken out-of-plane symmetry,z-cut periodically poled lithium niobate(PPLN)has exhibited ultrahigh second-order optical nonlinearity.Precise quantification of the domain structure of z-cut PPLN plays a critical role during poling fabrication.To enhance the imaging detection efficiency of the domain structure in z-cut PPLN,we have developed a second-harmonic generation microscope system specifically designed to produce a longitudinal electric field in foci for the imaging domain inversion.We demonstrated that imaging using a longitudinal electric field can achieve a contrast ratio enhancement by a factor of 1.77,showing high imaging efficiency and making the proposed method suitable for in situ monitoring of the z-cut PPLN poling process.
基金financial supports from National Key Research and Development Program of China (2021YFA1401000)National Natural Science Foundation of China (62435009)+2 种基金Beijing Municipal Natural Science Foundation (Z220008)Zhuhai Industry University Research Collaboration Project (ZH-2201700121010)supported by the Center of High Performance Computing,Tsinghua University
文摘Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices.However,the nanofabrication of these devices requires high-quality etching of these thin films,necessitating the long-term development of the fabrication recipe and specialized equipment.Here we present a strong-confinement low-index-rib-loaded waveguide structure as the building block of various passive and active integrated photonic devices based on novel thin films.By optimizing this low-index-rib-loaded waveguide structure without etching the novel thin film,we can simultaneously realize strong optical power confinement in the thin film,low optical propagation loss,and strong electro-optic coupling for the fundamental transverse electric mode.Based on our low-index-rib-loaded waveguide structure,we designed and fabricated a thin film lithium niobate(TFLN)modulator,featuring a 3-dB modulation bandwidth over 110 GHz and a voltage-length product as low as 2.26 V·cm,which is comparable to those of the state-of-the-art etched TFLN modulators.By alleviating the etching of novel thin films,the proposed structure opens up new ways of fast proof-of-concept demonstration and even mass production of high-performance integrated electro-optic and nonlinear devices based on novel thin films.
基金supported by the National Natural Science Foundation of China (NSFC) (Grants No. 12274236, 12134009, 12074223)Shandong Provincial Natural Science Foundation (Grants No. 2022HWYQ-047, ZR2024MA041)+3 种基金Taishan Scholars Program of Shandong Province (Grants No. tsqn201909041)“Qilu Young Scholar Program” of Shandong UniversityCore Facility Sharing Platform of Shandong UniversityOpen Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems
文摘Controlling the construction of physical colors on the surfaces of transparent dielectric crystals is crucial for surface coloration and anti-counterfeiting applications.In this study,we present a novel approach to creating stable physical colors on the surface of lithium niobate crystals by combining gold ion implantation with laser direct writing technologies.The interaction between the laser,the implanted gold nanoparticles,and the crystal lattice induces permanent,localized modifications on the crystal surface.By fine-tuning the laser direct writing parameters,we reshaped the gold nanoparticles into spheres of varying sizes on the crystal surface,resulting in the display of red,green,blue,and pale-yellow colors.We investigated the influence of the implanted Au nanoparticles-particularly their localized surface plasmon resonances-on the modifications of the lithium niobate crystal lattice during the laser writing process using confocal Raman spectroscopy and high-resolution transmission electron microscopy.Our findings reveal that the embedded Au nanoparticles play a pivotal role in altering the conventional light-matter interaction between the crystal lattice and the laser,thereby facilitating the generation of surface colors.This work opens new avenues for the development of vibrant surface colors on transparent dielectric crystals.
基金supported by the Science and Technology Project of Guangdong Province,China(Grant No.2020B010190001)the National Natural Science Foundation of China(Grant No.12434016)+1 种基金the National Key Research and Development Program of China(Grant No.2023YFA1406900)the Fund of the National Postdoctoral Researcher Program(Grant No.GZB20240785).
文摘Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them,which is restricted in application due to the complexity of the optical path and the bulkiness of the device.In this work,we present a comprehensive theoretical and numerical investigation of the simultaneous generation and competition between the second harmonic waves(SHW)and the third harmonic waves(THW)in a single nonlinear crystal.Through analyzing both small-signal and large-signal regimes,we reveal the complex coupling mechanisms between SHW and THW generation processes.Using periodically poled lithium niobate as an example,we demonstrate that the relative conversion efficiencies between SHW and THW can be freely adjusted by controlling the input fundamental wave power.This work provides new insights for designing efficient frequency converters capable of generating both SHW and THW outputs with controllable intensity ratios.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2022YFF0712800 and 2019YFA0308700)。
文摘Optical isolators,the photonic analogs of electronic diodes,are essential for ensuring the unidirectional flow of light in optical systems,thereby mitigating the destabilizing effects of back reflections.Thin-film lithium niobate(TFLN),hailed as“the silicon of photonics,”has emerged as a pivotal material in the realm of chip-scale nonlinear optics,propelling the demand for compact optical isolators.We report a breakthrough in the development of a fully passive,integrated optical isolator on the TFLN platform,leveraging the Kerr effect to achieve an impressive 10.3 dB of isolation with a minimal insertion loss of 1.87 dB.Further theoretical simulations have demonstrated that our design,when applied to a microring resonator with a Q factor of 5×10^(6),can achieve 20 dB of isolation with an input power of merely 8 mW.This advancement underscores the immense potential of lithium niobate-based Kerr-effect isolators in propelling the integration and application of high-performance on-chip lasers,heralding a new era in integrated photonics.
基金supported by the Scientific Research Innovation Capability Support Project for Young Faculty(Grant No.ZYGXQNJSKYCXNLZCXM-I3)the National Key Research and Development Program of China(Grant No.2022YFA1604402)+1 种基金the National Natural Science Foundation of China(Grant Nos.U23A6002 and 92250307)the Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(Grant No.Z251100006925005)。
文摘High-average-power strong-field terahertz(THz)pulses,which are generated via the optical rectification of 100-W average-power ytterbium(Yb)lasers in a nonlinear crystal,have been used to study extreme physical phenomena and realize various applications.However,this THz generation method suffers from a trade-off in which high repetition rates lead to low optical-to-THz energy conversion efficiency,as well as the risk of damage to the crystals under high average pumping power.In this study,we demonstrate a high-averagepower,high-repetition-rate,strong-field THz source in lithium niobate driven by a 1030 nm,1 ps,2 mJ,100 kHz Yb femtosecond laser with a tilted-pulse front-pumping configuration.By characterizing two key experimental parameters,namely the pump spot size and pulse duration,we achieve,to the best of our knowledge,the highest THz average power of 104mW at 100 kHz,with a conversion efficiency of 0.1%and without any cooling operation at room temperature.In addition,a strong electric field of 421 kV/cm is achieved at 1 kHz.Our THz system directly demonstrates its potential capabilities in high-signal-to-noise spectroscopy,imaging,nondestructive testing,and relevant THz applications.
基金financial supports from National Key R&D Program of China(Grant No.2022YFA1205100,2022YFA1404600)National Natural Science Foundation of China(Grant Nos.12192251,12334014,12474325,12134001,12304418,12474378,12274133,12174107,12174113,12274130)+2 种基金the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)Fundamental Research Funds for the Central Universities,the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(No.2023nmc005).
文摘Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band.In this work,an erbium-doped thin film lithium niobate waveguide amplifier achieving>10 dB off-chip(fiber-to-fiber)net gain and>20 mW fiber-output amplified power is demonstrated,thanks to the low-propagation-loss waveguides and robust waveguide edge-couplers prepared by the photolithography assisted chemomechanical etching technique.Systematic investigation on the fabricated waveguide amplifiers reveals remarkable optical gain around the peak wavelength of 1532 nm as well as the low fiber-coupling loss of-1.2 dB/facet.A fiber Bragg-grating based waveguide laser is further demonstrated using the fabricated waveguide amplifier as the external gain chip,which generates>2 mW off-chip power continuous-wave lasing around the gain peak at 1532 nm.The unambiguous demonstration of fiber-to-fiber net gain of the erbium-doped thinfilm lithium niobate(TFLN)waveguide amplifier as well as its external gain chip application will benefit diverse fields demanding scalable gain elements with highspeed tunability.
基金supported by the National Key Research and Development Program of China(Grant No.2024YFB2808300)the National Natural Science Foundation of China(Grant Nos.62293523,62288101,62305156,92463304,92463308,12304421,and 12341403)+2 种基金Zhangjiang Laboratory(Grant No.ZJSP21A001)Program of Jiangsu Natural Science Foundation(Grant Nos.BK20230770 and BK20232033)Guangdong Major Project of Basic and Applied Basic Re-search(Grant No.2020B0301030009).
文摘Microring resonators,as essential components of photonic integrated circuits,offer compact size,wavelength selectivity,and strong resonance effects,making them invaluable in optical computing,on-chip interconnects,and quantum photonics.The proposal of the pulley-type microring enhances the coupling strength,but also brings about issues such as mode mismatch and the excitation of higher-order modes.Here,a lithium niobate microring resonator coupled with a pulley bus waveguide based on modified Euler curves is proposed.This Euler-modified pulley bus minimizes mode mismatch at bending junctions,effectively suppressing higher-order mode excitation.The design achieves a high Q factor(exceeding 105)and strong coupling efficiency(83%)within a compact structure of 70μm radius.Due to its simple structure and ease of fabrication,the Euler-modified pulley-type microring holds practical value for applications requiring high-quality microring resonators.
基金supported by the National Natural Science Foundation of China(Grant Nos.12192251,12334014,12404378,92480001,12134001,12174113,12174107,12474325,12404379,and 12474378)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)+1 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)Fundamental Research Funds for the Central Universities,the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(Grant No.2023nmc005).
文摘We present a compact optical delay line(ODL)with wide-range continuous tunability on thin-film lithium niobate platform.The proposed device integrates an unbalanced Mach-Zehnder interferometer(MZI)architecture with dual tunable couplers,where each coupler comprises two 2×2 multimode interferometers and a MZI phase-tuning section.Experimental results demonstrate continuous delay tuning from 0 to 293 ps through synchronized control of coupling coefficients,corresponding to a 4 cm path difference between interferometer arms.The measured delay range exhibits excellent agreement with theoretical predictions derived from ODL waveguide parameters.This result addresses critical challenges in integrated photonic systems that require precise temporal control,particularly for applications in optical communications and quantum information processing,where a wide tuning range is paramount.
基金Projects(51404057,50874026)supported by the National Natural Science Foundation of ChinaProject(N150204014)supported by Fundamental Research Funds for the Central Universities,China
文摘NbC-Sn composite powder was successfully prepared from SnO2,Nb2O5and carbon by electrochemical reduction andcarbonization in CaCl2-NaCl molten salt at900°C.The reaction pathway was investigated by terminating electrochemicalexperiments for various durations.The influence of carbon on the final products was considered.NbC particles were obtained byleaching the composite with acid.The results showed that the aggregated NbC-Sn composite powdev contained NbC particles about50-100nm and Sn particles about200nm.SnO2was reduced to Sn in the sintering process.Nb2O5was electrochemically reduced toNb in molten salt,experiencing some intermediate products of calcium niobates and niobium suboxides.Nb metal obtained wasconverted to NbC with assistance of carbon.The reduction of Nb oxides may be incomplete and Nb3Sn would be formed if carbon isinsufficient in the cathodic pellet.NbC with good dispersity is produced by leaching NbC-Sn with HCl.
基金under the support of the Natural Science Foundation of China(51762028 and 91960103)the Materials Genome Engineering of Rare and Precious Metal of Yunnan Province(2018ZE019).
文摘Ferroelastic ABO4 type RETaO4 and RENbO4 ceramics(where RE stands for rare earth)are being investigated as promising thermal barrier coatings(TBCs),and the mechanical properties of RETaO4 have been found to be better than those of RENbO4.In this work,B-site substitution of tantalum(Ta)is used to optimize the thermal and mechanical properties of EuNbO4 fabricated through a solid-state reaction(SSR).The crystal structure is clarified by means of X-ray diffraction(XRD)and Raman spectroscopy;and the surface microstructure is surveyed via scanning electronic microscope(SEM).The Young’s modulus and the thermal expansion coefficient(TEC)of EuNbO4 are effectively increased;with respective maximum values of 169 GPa and 11.2×10^-6 K^-1(at 1200℃).The thermal conductivity is reduced to 1.52 W·K^-1·m^-1(at 700℃),and the thermal radiation resistance is improved.The relationship between the phonon thermal diffusivity and temperature was established in order to determine the intrinsic phonon thermal conductivity by eliminating the thermal radiation effects.The results indicate that the thermal and mechanical properties of EuNbO4 can be effectually optimized via the B-site substitution of Ta,and that this proposed material can be applied as a high-temperature structural ceramic in future.
基金supported by the Beijing Natural Science Foundation (No.2112028)the Research Fund for the Doctoral Pro-gram of Higher Education of China (No.20090006110010)the Doctoral Start-up Fund of Henan University of Science and Technology(No.09001542)
文摘ZnO-modified (Li, Na, K)NbO3 lead-free ceramics with a nominal composition of Li0.06(Na0.535K0.48)0.94NbO3+0.7mol% ZnO (LNKN-ZT) was synthesized normally at 930-1000℃. The Zn ions incorporated into the A-site at a higher sintering temperaVare, which changed LNKN-Z7 to soft piezoelectric ceramics with the mechanical quality factor decreasing from 228 to 192. A phase transition from tetragonal to orthorhombic symmetry was identified by XRD analysis, and the corresponding calculation of lattice parameters was conducted at 970-980℃. Because of such transitional behavior and fine microstructure, the optimized values of piezoelectric coefficient, planar electromechanical coupling coefficient, and relative dielectric constant were obtained.
文摘The complex dielectric constant of pure and cerium doped calcium-barium-niobate (CBN) was studied at frequencies 20 Hz ≤ f ≤ 1 MHz in the temperature range 300 K ≤ T ≤ 650 K and compared with the results for the well known ferroelectric relaxor strontium-barium-niobate (SBN). By the analysis of the systematically taken temperature and frequency dependent measurements of the dielectric constant the phase transition characteristic of the investigated materials was evaluated. From the results it must be assumed that CBN shows a slightly diffuse phase transition without relaxor behavior. Doping with cerium yields a definitely different phase transition characteristic with some indications for a relaxor type ferroelectric material, which are common from SBN.