期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
VA-Creator-A Virtual Appliance Creator based on adaptive Neural Networks to generate synthetic power consumption patterns
1
作者 Michael Meiser Benjamin Duppe +1 位作者 Ingo Zinnikus Alexander Anisimov 《Energy and AI》 2024年第4期160-200,共41页
With the advent of the Smart Home domain and the increasingly widespread application of Machine Learning(ML),obtaining power consumption data is becoming more and more important.Collecting real-world energy data using... With the advent of the Smart Home domain and the increasingly widespread application of Machine Learning(ML),obtaining power consumption data is becoming more and more important.Collecting real-world energy data using sensors is time consuming,expensive,error-prone and in some situations not possible.Therefore,we present the VA-Creator,a framework to create Virtual Appliances(VAs).These VAs synthesize power consumption patterns(PCPs)based on Neural Networks(NNs)which adapt their architecture to the training data structure to simplify the creation of new VAs.To be able to generate all appliance types available in a typical household we use various kinds of NN,including Multilayer Perceptrons(MLPs),Long Short-Term Memorys(LSTMs)and a specific Generative Adversarial Network(GAN)as well as different ML techniques such as XGBoost,selecting the appropriate technique depending on each appliance’s characteristics.We then compare the results of the ML models against real data and evaluate them by using Dynamic time Warping(DTW)as well as the classification performance of an MLP discriminator as metrics.Additionally,to ensure that the VAs allow to meaningfully train ML models,we use them to generate synthetic data and then train Non intrusive Load Monitoring(NILM)models in an extensive evaluation.The presented evaluation provides evidence that the VA models produce realistic and meaningful results. 展开更多
关键词 Smart Home Synthetic Sensor Data Energy data Virtual Appliance Machine Learning Neural Networks Multilayer Perceptron Generative Adversarial Network Dynamic Time Warping Transfer Learning Non-Intrusive Load Monitoring nilmtk
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部