期刊文献+
共找到23,085篇文章
< 1 2 250 >
每页显示 20 50 100
Nickel extraction from nickel laterites: Processes, resources, environment and cost
1
作者 Zhen-fang Zhang Wei-bo Zhang +1 位作者 Zhen-guo Zhang Xiu-fa Chen 《China Geology》 2025年第1期187-213,共27页
With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth... With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth point in consumption.This paper systematically summarizes the processes,parameters,products,recovery rates,environmental indicators,costs,advantages,disadvantages and the latest research progress of mainstream nickel extraction processes from laterite nickel ore.It also provides a comparative analysis of the environmental impact and economic efficiency of different nickel extraction processes.It is found that the current nickel extraction processes from laterite nickel ore globally for commercial production mainly include the RKEF process for producing ferronickel and the HPAL process for producing intermediate products.The former accounts for about 80%of laterite nickel ore production.Compared to each other,the investment cost per ton of nickel metal production capacity for the RKEF is about 43000$,with an operational cost of about 16000$per ton of nickel metal and a total nickel recovery rate of 77%–90%.Its products are mainly used in stainless steels.For the HPAL process,the investment cost per ton of nickel metal production capacity is about 56000$,with an operational cost of about 15000$per ton of nickel metal and a total nickel recovery rate of 83%–90%.Its products are mainly used in power batteries.The significant differences between the two lies in energy consumption and carbon emissions,with the RKEF being 2.18 and 2.37 times that of the HPAL,respectively.Although the use of clean energy can greatly reduce the operational cost and environmental impact of RKEF,if RKEF is converted to producing high Ni matte,its economic and environmental performance still cannot match that of the HPAL and oxygen-enriched side-blown processes.Therefore,it can be inferred that with the increasing demand for nickel in power batteries,HPAL and oxygen-enriched side blowing processes will play a greater role in laterite nickel extraction. 展开更多
关键词 Laterite nickel ore LIMONITE SAPROLITE nickel extraction PYROMETALLURGY Power batteries Hydrometallurgy COST Environmental impact Life cycle assessment Comprehensive utilization Mineral exploration engineering
在线阅读 下载PDF
Global exploration trends and prospects for lithium,cobalt,and nickel battery metals in 2024
2
作者 Ji Chen Yun Yu +2 位作者 Jian-feng Yang Ben-Yang Xu Qian Cao 《China Geology》 2025年第4期869-870,共2页
Exploration budgets for primary battery metals-nickel,lithium and cobalt-tempered in 2024 at$1.697 billion,reflecting a marginal 0.4%decline and a virtually flat annual total,compared to$1.704 billion in 2023.Below is... Exploration budgets for primary battery metals-nickel,lithium and cobalt-tempered in 2024 at$1.697 billion,reflecting a marginal 0.4%decline and a virtually flat annual total,compared to$1.704 billion in 2023.Below is an introduction to the 2024 global exploration trends and prospects for lithium,cobalt,and nickel battery metals. 展开更多
关键词 global prospects LITHIUM COBALT battery metals nickel primary battery metals nickellithium exploration trends
在线阅读 下载PDF
Synergistic improvement of erosion-corrosion resistance and mechanical properties of nickel aluminium bronze alloy by the addition of Cr 被引量:1
3
作者 Wan-Yu Wang Wen-Jing Zhang +1 位作者 Guo-Jie Huang Xu-Jun Mi 《Rare Metals》 2025年第1期623-638,共16页
The effect of Cr addition on nickel aluminium bronze(NAB)alloy microstructure,mechanical properties,and erosion-corrosion behaviour has been studied.The results show that Cr addition does not change the composition of... The effect of Cr addition on nickel aluminium bronze(NAB)alloy microstructure,mechanical properties,and erosion-corrosion behaviour has been studied.The results show that Cr addition does not change the composition of the precipitated phases,more Cr entered theκphase and a small amount of Cr solubilized in the matrix,which increase the hardness of theκand matrix and decrease the potential difference between theκand matrix.NAB alloy with Cr shows high erosion-corrosion resistance at high flow rate conditions,due to its lower phase potential difference and higher surface hardness.At the flow rate of 3 m·s^(-1),the corrosion rate is 0.076 mm·year^(-1),which is~20%lower than that of the unadded Cr sample.Moreover,the corrosion product film contains Cr_(2)O_(3)and Cr^(3+),which improves the densification of the film and raises alloy’s corrosion resistance with Cr addition.The combination of mechanical and corrosion resistant properties may qualify this alloy as a potential candidate material for sustainable and safe equipment. 展开更多
关键词 nickel aluminium bronze Cr addition Microstructure Erosion-corrosion behaviour Mechanical properties
原文传递
In situ growth of iron incorporated Ni_(3)S_(2)nanosheet on nickel foam in mediating electron transfer to peroxymonosulfate for pollutant abatement 被引量:1
4
作者 Yunjin Yao Zhongming Tao +5 位作者 Hongwei Hu Lijie Zhang Ziwei Ma Yaoyao Wang Shiyang Lin Shaobin Wang 《Journal of Environmental Sciences》 2025年第4期704-718,共15页
Catalytic oxidation of organic pollutants is a well-known and effective technique for pollutant abatement.Unfortunately,this method is significantly hindered in practical applications by the lowefficiency and difficul... Catalytic oxidation of organic pollutants is a well-known and effective technique for pollutant abatement.Unfortunately,this method is significantly hindered in practical applications by the lowefficiency and difficult recovery of the catalysts in a powdery form.Herein,a three-dimensional(3D)framework of Fe-incorporated Ni_(3)S_(2)nanosheets in-situ grown on Ni foam(Fe-Ni_(3)S_(2)@NF)was fabricated by a facile two-step hydrothermal process and applied to trigger peroxymonosulfate(PMS)oxidation of organic compounds inwater.A homogeneous growth environment enabled the uniform and scalable growth of Fe-Ni_(3)S_(2)nanosheets on the Ni foam.Fe-Ni_(3)S_(2)@NF possessed outstanding activity and durability in activating PMS,as it effectively facilitated electron transfer from organic pollutants to PMS.Fe-Ni_(3)S_(2)@NF initially supplied electrons to PMS,causing the catalyst to undergo oxidation,and subsequently accepted electrons from organic compounds,returning to its initial state.The introduction of Fe into the Ni_(3)S_(2)lattice enhanced electrical conductivity,promoting mediated electron transfer between PMS and organic compounds.The 3D conductive Ni foam provided an ideal platform for the nucleation and growth of Fe-Ni_(3)S_(2),accelerating pollutant abatement due to its porous structure and high conductivity.Furthermore,its monolithic nature simplified the catalyst recycling process.A continuous flow packed-bed reactor by encapsulating Fe-Ni_(3)S_(2)@NF catalyst achieved complete pollutant abatement with continuous operation for 240 h,highlighting its immense potential for practical environmental remediation.This study presents a facile synthesis method for creating a novel type of monolithic catalyst with high activity and durability for decontamination through Fenton-like processes. 展开更多
关键词 nickel foam Organic pollutants Persulfate activation Non-radical pathway Electron transfer
原文传递
Pyrimidine derivative as eco-friendly corrosion inhibitor for nickel−aluminum bronze in seawater 被引量:1
5
作者 Jin-yu PI Qi WANG Chao-yang FU 《Transactions of Nonferrous Metals Society of China》 2025年第1期207-224,共18页
A pyrimidine derivative,6-phenyl-2-thiouracil(PT),was synthesized for developing a corrosion inhibitor(CI)applied in the protection of the nickel−aluminum bronze(NAB)in seawater.The anti-corrosion effect of PT was eva... A pyrimidine derivative,6-phenyl-2-thiouracil(PT),was synthesized for developing a corrosion inhibitor(CI)applied in the protection of the nickel−aluminum bronze(NAB)in seawater.The anti-corrosion effect of PT was evaluated by the mass loss experiment,electrochemical tests and surface analysis.The results show that PT exhibits excellent inhibition performance and the maximum inhibition efficiency of PT reaches 99.6%.The interaction mechanism was investigated through X-ray photoelectron spectroscopy(XPS)and molecule dynamics simulation based on the density functional theory(DFT).The S-Cu,Al-N and Cu-N bonds are formed by the chemical interactions,leading to the adsorption of PT on the NAB surface.The diffusion of corrosive species is hindered considerably by the protective PT film with composition of(PT-Cu)_(ads)and(PT-Al)_(ads)on the PT/NAB interface.The degree of suppression is increased with the addition of more PT molecules. 展开更多
关键词 nickel−aluminum bronze corrosion inhibitor diffusion coefficient ADSORPTION seawater
在线阅读 下载PDF
Direct ink writing of nickel oxide-based thin films for room temperature gas detection 被引量:1
6
作者 Neha Thakur Hari Murthy +3 位作者 Sudha Arumugam Neethu Thomas Aarju Mathew Koshy Parasuraman Swaminathan 《Journal of Semiconductors》 2025年第1期245-258,共14页
The rapid industrial growth and increasing population have led to significant pollution and deterioration of the natural atmospheric environment.Major atmospheric pollutants include NO_(2)and CO_(2).Hence,it is impera... The rapid industrial growth and increasing population have led to significant pollution and deterioration of the natural atmospheric environment.Major atmospheric pollutants include NO_(2)and CO_(2).Hence,it is imperative to develop NO_(2)and CO_(2)sensors for ambient conditions,that can be used in indoor air quality monitoring,breath analysis,food spoilage detection,etc.In the present study,two thin film nanocomposite(nickel oxide-graphene and nickel oxide-silver nanowires)gas sensors are fabricated using direct ink writing.The nano-composites are investigated for their structural,optical,and electrical properties.Later the nano-composite is deposited on the interdigitated electrode(IDE)pattern to form NO_(2)and CO_(2)sensors.The deposited films are then exposed to NO_(2)and CO_(2)gases separately and their response and recovery times are determined using a custom-built gas sensing setup.Nickel oxide-graphene provides a good response time and recovery time of 10 and 9 s,respectively for NO_(2),due to the higher electron affinity of graphene towards NO_(2).Nickel oxide-silver nanowire nano-composite is suited for CO_(2)gas because silver is an excellent electrocatalyst for CO_(2)by giving response and recovery times of 11 s each.This is the first report showcasing NiO nano-composites for NO_(2)and CO_(2)sensing at room temperature. 展开更多
关键词 nickel oxide GRAPHENE silver nanowires NO_(2) CO_(2) gas sensor
在线阅读 下载PDF
Insights into the effect of Y substitution on superlattice structure and electrochemical performance of A_(5)B_(19)-type La-Mg-Ni-based hydrogen storage alloy for nickel metal hydride battery 被引量:1
7
作者 Yanan Guo Wenfeng Wang +5 位作者 Huanhuan Su Hang Lu Yuan Li Qiuming Peng Shumin Han Lu Zhang 《Journal of Materials Science & Technology》 2025年第4期60-69,共10页
La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation pr... La-Mg-Ni-based hydrogen storage alloys with superlattice structures are the new generation anode material for nickel metal hydride(Ni-MH)batteries owing to the advantages of high capacity and exceptional activation properties.However,the cycling stability is not currently satisfactory enough which plagues its application.Herein,a strategy of partially substituting La with the Y element is proposed to boost the capacity durability of La-Mg-Ni-based alloys.Furthermore,phase structure regulation is implemented simultaneously to obtain the A5 B19-type alloy with good crystal stability specifically.It is found that Y promotes the phase formation of the Pr5 Co19-type phase after annealing at 985℃.The alloy containing Y contributes to the superior rate capability resulting from the promoted hydrogen diffusion rate.Notably,Y substitution enables strengthening the anti-pulverization ability of the alloy in terms of increasing the volume match between[A_(2)B_(4)]and[AB5]subunits,and effectively enhances the anti-corrosion ability of the alloy due to high electronegativity,realizing improved long-term cycling stability of the alloy from 74.2%to 78.5%after cycling 300 times.The work is expected to shed light on the composition and structure design of the La-Mg-Ni-based hydrogen storage alloy for Ni-MH batteries. 展开更多
关键词 nickel metal hydride battery Y element La-Mg-Ni-based alloy A5 B19-type superlattice structure Electrochemical performance
原文传递
Photoinduced Nickel-Catalyzed Reductive Heck Reaction
8
作者 Liu Junjie Zhao Hongping +2 位作者 Hu Yuanyuan Wang Hengxin Yuan Weiming 《有机化学》 北大核心 2025年第5期1691-1697,共7页
An efficient visible-light induced nickel-catalyzed reductive Heck reaction of alkenes by using mild organic reductant Hantzsch ester(HEH)instead of traditional metal reductants or hydride reagents was developed.The r... An efficient visible-light induced nickel-catalyzed reductive Heck reaction of alkenes by using mild organic reductant Hantzsch ester(HEH)instead of traditional metal reductants or hydride reagents was developed.The reductive hydroarylation of acrylates with aryl halides was successfully achieved without requiring exogenous photoredox catalysts.This reaction is highlighted by the simple and mild conditions,good functional group tolerance,thus providing a complementary approach for alkenes reductive Heck reaction. 展开更多
关键词 nickel reductive Heck reaction visible light organic reductant alken
原文传递
Microstructure and Mechanical Properties of Explosively Welded Nickel/Steel Composite Plate Interface
9
作者 Li Yan Wang Guicheng +3 位作者 Zhang Wenbin Yang Haijuan Li Jucai Liu Cuirong 《稀有金属材料与工程》 北大核心 2025年第8期1971-1979,共9页
High-performance pure nickel N6/steel 45#composite plate(N6/45#)was prepared using explosive welding technique.The microstructure of the interface and nearby regions was characterized and analyzed by optical microscop... High-performance pure nickel N6/steel 45#composite plate(N6/45#)was prepared using explosive welding technique.The microstructure of the interface and nearby regions was characterized and analyzed by optical microscope,scanning electron microscope,electron backscatter diffraction,and mechanical property testing,and the microstructural features and mechanical properties of the explosive welding interface were explored.The results show that along the direction of explosive welding,the pure nickel N6/steel 45#composite plate interface gradually evolves from a flat bond to a typical wavy bond.The grains at the crests and troughs exhibit high heterogeneity,and the closer to the interface,the finer the grains.Recrystallization and low-stress deformation bands are formed at the bonding interface.Nanoindentation tests reveal that plastic deformation occurs in the interfacial bonding zone,and the nanohardness values in the crest regions are higher than that in the trough regions.The tensile strength of the N6/45#interface is 599.8 MPa,with an average shear strength of 326.3 MPa.No separation phenomenon is observed between N6 and 45#after the bending test. 展开更多
关键词 explosive welding pure nickel N6/steel 45#composite plate MICROSTRUCTURE NANOINDENTATION
原文传递
Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes
10
作者 Zhenkang Ai Hui Chen Xuebin Liao 《Chinese Chemical Letters》 2025年第3期253-258,共6页
Herein,we describe a nickel-catalyzed reductive decarboxylative difluoromethylation reaction of alkenes using inexpensive and easy-to-handle difluoroacetic anhydride(DFAA)/pyridine N-oxide reagent system.A variety of ... Herein,we describe a nickel-catalyzed reductive decarboxylative difluoromethylation reaction of alkenes using inexpensive and easy-to-handle difluoroacetic anhydride(DFAA)/pyridine N-oxide reagent system.A variety of C(sp^(3))-CF_(2)H containing compounds were prepared through a hydrodifluoromethylation process.Besides,various gem–difluoroalkenes bearing CF_(2)H group were synthesized via defluorinative reductive cross-coupling process from trifluoromethyl-substituted alkenes using this new reaction system.Difluoroacetic anhydride has been then extended to other common alkyl anhydrides,and the corresponding hydroalkylation and defluoroalkylation processes have been successfully achieved.This method features broad substrate scope,good functional group tolerance as well as high efficiency. 展开更多
关键词 nickel DIFLUOROMETHYLATION Difluoroacetic anhydride Decarboxylative ALKENES
原文传递
Iminopyridine Manganese and Nickel Complexes:Synthesis,Characterization and Behavior in the Polymerization of 1,3-Butadiene
11
作者 Giovanni Ricci Benedetta Palucci +4 位作者 Simona Losio Anna Sommazzi Francesco Masi Guido Pampaloni Massimo Guelfi 《Chinese Journal of Polymer Science》 2025年第1期83-89,I0008,共8页
Some novel manganese and nickel complexes were synthesized by reacting manganese(Ⅱ) dichloride and nickel(Ⅱ) dichloride with pyridyl-imine ligands differing in the nature of the substituents at the imino nitrogen at... Some novel manganese and nickel complexes were synthesized by reacting manganese(Ⅱ) dichloride and nickel(Ⅱ) dichloride with pyridyl-imine ligands differing in the nature of the substituents at the imino nitrogen atom. All the complexes were characterized by analytical and infrared data: for some of them single crystals were obtained, and their molecular structure was determined by X-ray diffraction. The complexes were used in association with methylaluminoxane(MAO) for the polymerization of 1,3-butadiene obtaining active and selective catalysts giving predominantly 1,2 polybutadiene in case of manganese catalysts and exclusively cis-1,4 polybutadiene in case of nickel catalysts. 展开更多
关键词 MANGANESE nickel CATALYSTS POLYMERIZATION POLYBUTADIENE X-ray structures
原文传递
Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay
12
作者 Shaobin He Xiaoyun Guo +7 位作者 Qionghua Zheng Huanran Shen Yuan Xu Fenglin Lin Jincheng Chen Haohua Deng Yiming Zeng Wei Chen 《Chinese Chemical Letters》 2025年第4期570-575,共6页
Researchers have shown significant interest in modulating the peroxidase-like activity of nanozymes.Among these,bimetallic nanozymes have shown superior peroxidase-like activity over monometallic counterparts,offering... Researchers have shown significant interest in modulating the peroxidase-like activity of nanozymes.Among these,bimetallic nanozymes have shown superior peroxidase-like activity over monometallic counterparts,offering enhanced performance and cost-efficiency in nanozyme designs.Herein,bimetallic nanozymes comprising nickel(Ni)and osmium(Os)incorporated into hyaluronate(HA)have been developed,resulting in HA-Nin/Os nanoclusters.Subsequently,comprehensive characterizations have been conducted.Further investigation has revealed that HA-Nin/Os efficiently catalyzed 3,3,5,5-tetramethylbenzidine(TMB)oxidation with hydrogen peroxide(H_(2)O_(2)),confirming its peroxidase-like behavior and role as a nanozyme.Impressively,HA-Ni_(2)/Os(Ni/Os=2:1)displays heightened substrate affinity,accelerated reaction rates,enhanced hydroxyl radical production in acidic conditions,and exhibits activity unit of 1224 U/mg,representing more than two-fold increase compared to non-Ni-supported Os nanozyme.Theoretical calculations indicate that Ni support enhances the peroxidase-like process of Os nanozyme by improving H_(2)O_(2) adsorption and TMB oxidation.Crucially,the support of Ni does not significantly alter the other enzyme-like activities of Os nanozymes,thereby enabling Ni to selectively enhance their peroxidase-like activity.In terms of application,the peroxidase-like ability of HA-Ni_(2)/Os,facilitated by HA's carboxyl groups enabling crosslinking,proves effective in a squamous carcinoma antigen immunoassay.Moreover,HA-Ni_(2)/Os exhibit reliable stability,promising as a peroxidase substitute.This work underscores the advantages of incorporating Ni into Os,specifically enhancing peroxidase-like activity,highlighting the potential of Os bimetallic nanozymes for peroxidase-based applications. 展开更多
关键词 Nanozyme OSMIUM nickel BIMETALLIC Peroxidase-like activity IMMUNOASSAY
原文传递
Nitrogen-doped lignin mesoporous carbon/nickel/oxide nanocomposites with excellent lithium storage properties
13
作者 Ping-Xian Feng Qi-Liang Chen +1 位作者 Dong-Jie Yang Huan Wang 《Rare Metals》 2025年第2期889-900,共12页
Developing high-capacity carbon-based anode materials is crucial for enhancing the performance of lithium-ion batteries(LIBs).In this study,we presented a nitrogen-doped lignin mesoporous carbon/nickel/nickel oxide(NH... Developing high-capacity carbon-based anode materials is crucial for enhancing the performance of lithium-ion batteries(LIBs).In this study,we presented a nitrogen-doped lignin mesoporous carbon/nickel/nickel oxide(NHMC/Ni/NiO)nanocomposite for developing high-capacity LIBs anode materials through carbonization and selective etching strategies.The synthesized NMHC/Ni/NiO-0.33 composite exhibited a highly regular microstructure with well-dispersed Ni/NiO particles.The composite had a surface area of 408 m^(2)·g^(−1),a mesopore ratio of 75.0%,and a pyridine–nitrogen ratio of 58.9%.The introduction of nitrogen atoms reduced the disordered structure of lignin mesoporous carbon and enhanced its electrical conductivity,thus improving the lithium storage capabilities of the composite.Following 100 cycles at a current density of 0.2 A·g^(−1),the composite demonstrated enhanced Coulomb efficiency and rate performance,achieving a specific discharge capacity of 1230.9 mAh·g^(−1).At a high-current density of 1 A·g^(−1),the composite exhibited an excellent specific discharge capacity of 714.6 mAh·g^(−1).This study presents an innovative method for synthesizing high-performance anode materials of LIBs. 展开更多
关键词 NITROGEN-DOPED Lignin mesoporous carbon Carbon/nickel/nickel oxide Lithium-ion batteries
原文传递
Simulated solution condition experiment and process design for copper deep removal from nickel anodes based on ion-exchange
14
作者 TANG Xiao-wei ZHAO Zhong-wei 《Journal of Central South University》 2025年第4期1353-1367,共15页
Removing copper from nickel electrolysis anode solution has been a major keypoint in the nickel metallurgy industry.In this study,we proposed a novel process flow to promote removing copper from nickel electrolysis an... Removing copper from nickel electrolysis anode solution has been a major keypoint in the nickel metallurgy industry.In this study,we proposed a novel process flow to promote removing copper from nickel electrolysis anode solution.A simulated nickel anode solution was designed,and static and dynamic adsorption experiments were conducted to determine the best of solution pH,adsorption time and temperature,resin dosage and particle size,and stirring speed.The optimal conditions were explored for copper removal from nickel electrolysis anode solution.Based on the optimal experimental conditions and the relevant experimental data,a novel process for copper removal from nickel electrolysis anodes was designed and verified.This novel process of copper removal from nickel electrolysis anodes was confirmed with nickel anolyte solution with nickel 50−60 g/L and copper 0.5 g/L.After finishing the novel process of copper removal,the nickel in the purified nickel anolyte became undetectable and copper concentration was 3 mg/L,the novel process of resin adsorption to remove copper from nickel anode solution through static and dynamic adsorptions has an efficacious copper removal.It is a beneficial supplement to traditional methods. 展开更多
关键词 copper removal nickel extract ion exchange RESIN adsorption DESORPTION
在线阅读 下载PDF
Exogenous Alpha-Ketoglutarate(AKG)Modulate Physiological Characteristics,Photosynthesis,Secondary Metabolism and Antioxidant Defense System in Peganum Harmala L.under Nickel Stress
15
作者 Marwa Rezgui Wided Ben Ammar +2 位作者 Muhammad Nazim Walid Soufan Chiraz Chaffei Haouari 《Phyton-International Journal of Experimental Botany》 2025年第1期137-155,共19页
Nickel(Ni)toxicity significantly impairs plant growth,photosynthesis,and metabolism by inducing oxidative stress.This study evaluates the potential of exogenous Alpha-Ketoglutarate(AKG)in mitigating Ni-induced stress ... Nickel(Ni)toxicity significantly impairs plant growth,photosynthesis,and metabolism by inducing oxidative stress.This study evaluates the potential of exogenous Alpha-Ketoglutarate(AKG)in mitigating Ni-induced stress in Peganum harmala L.Seedlings were exposed to 0,200,500,and 750μM NiCl2,with or without AKG supplementation.Under 750μM Ni stress,dry weight(DW)decreased by 33.7%,tissue water content(TWC)by 39.9%,and chlorophyll a and total chlorophyll levels were reduced by 17%and 15%,respectively.Ni exposure also significantly increased secondary metabolite production,with leaf anthocyanin content rising by 131%,and superoxide dismutase(SOD)and catalase(CAT)activities increasing by 228%and 53%,respectively,in roots at 500μM Ni.AKG treatment alleviated Ni toxicity by enhancing TWC by 39%and promoting root and shoot growth.Additionally,AKG treatment boosted the synthesis of phenolic compounds and flavonoids,contributing to improved tolerance against Ni stress.These findings demonstrate the potential of AKG in enhancing Ni tolerance in P.harmala,suggesting its promising role in bioremediation of metal-contaminated soils.This is the first study to report the beneficial effects of exogenous AKG in alleviating nickel toxicity in P.harmala L.,offering a new approach for improving plant resilience to heavy metal stress. 展开更多
关键词 ALPHA-KETOGLUTARATE antioxidative enzymes oxidative stress Peganum harmala nickel
在线阅读 下载PDF
Hydrogen-assisted mineral phase transformation for iron recovery and sulfur removal from laterite nickel ore tailings
16
作者 Na Zhao Yuchao Qiu +3 位作者 Sainan Qi Mengyu He Qianwen Li Yongsheng Sun 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2429-2443,共15页
This study explores a hydrogen-assisted mineral phase transformation process with synergistic desulfurization for the efficient recovery of iron from the high-pressure acid leach(HPAL)tailings of laterite nickel ore.H... This study explores a hydrogen-assisted mineral phase transformation process with synergistic desulfurization for the efficient recovery of iron from the high-pressure acid leach(HPAL)tailings of laterite nickel ore.HPAL tailings containing 51.50wt%iron and 2.09wt%sulfur present environmental challenges due to their sulfur content.Pre-treatment at 950℃ for 15 min successfully reduced the sulfur content to 0.295wt%and increased the iron grade to 57.66wt%.Further hydrogen-assisted mineral phase transformation at 520℃ for 30 min,using 40vol%hydrogen and a gas flow rate of 600 mL·min^(-1),resulted in a product with an iron grade of 61.00wt%and 90.11%iron recovery.The overall desulfurization rate reached 85.83%when wet scrubbing and limestone were used to capture the sulfur.This study demonstrates the efficiency of this hydrogen-assisted process for sustainable iron recovery and sulfur removal from laterite nickel ore tailings,with potential for industrial applications. 展开更多
关键词 IRON RECOVERY SUSTAINABLE laterite nickel ore synergistic desulfurization
在线阅读 下载PDF
Nickel-catalyzed C(sp^(2))–H alkynylation of free α-substituted benzylamines using a transient directing group
17
作者 Xinghao Cai Chen Ma +5 位作者 Ying Kang Yuqiang Ren Xue Meng Wei Lu Shiming Fan Shouxin Liu 《Chinese Chemical Letters》 2025年第10期260-264,共5页
A nickel-catalyzed C(sp^(2))–H alkynylation of unprotected α-substituted benzylamines is achieved by utilizing a transient directing group. The combination of a TDG with a nickel catalyst significantly improves the ... A nickel-catalyzed C(sp^(2))–H alkynylation of unprotected α-substituted benzylamines is achieved by utilizing a transient directing group. The combination of a TDG with a nickel catalyst significantly improves the reaction step and atom economy. It has been investigated that the 2,4,6-trimethylpyridine ligand was critical to achieve the optimized reactivity. This protocol provides a straightforward route for synthesizing the alkynylated free benzylamines, featuring good substrate compatibility and monoselectivity. 展开更多
关键词 C-H activation nickel Transient directing group AMINES ALKYNYLATION
原文传递
Efficient electrocatalytic oxidation of glycerol toward formic acid over well-defined nickel nanoclusters capped by ligands
18
作者 Dan Yang Xiang Cui +8 位作者 Zhou Xu Qian Yan Yating Wu Chunmei Zhou Yihu Dai Xiaoyue Wan Yuguang Jin Leonid M.Kustov Yanhui Yang 《Chinese Journal of Catalysis》 2025年第9期185-197,共13页
The electrocatalytic oxidation of glycerol toward formic acid is one of the most promising pathways for transformation and utilization of glycerol.Herein,a series of well-defined Ni_(n)(SR)_(2n) nanoclusters(n=4,5,6;d... The electrocatalytic oxidation of glycerol toward formic acid is one of the most promising pathways for transformation and utilization of glycerol.Herein,a series of well-defined Ni_(n)(SR)_(2n) nanoclusters(n=4,5,6;denoted as Ni NCs)were prepared for the electrocatalytic glycerol oxidation toward formic acid,in which Ni_(6)-PET-50CV afforded the most excellent electrocatalytic performance with a high formic acid selectivity of 93% and a high glycerol conversion of 86%.This was attributed to the lowest charge transfer impedance and the most rapid reaction kinetics.Combined electrochemical measurements and X-ray absorption fine structure measurements revealed that the structures of Ni NCs remained intact after CV scanning pretreatment and electrocatalysis via forming the Ni–O bond.Additionally,the kinetic studies and in-situ Fourier transformed infrared suggested a sequential oxidation mechanism,in which the main reaction steps of glycerol→glyceraldehyde→glyceric acid were very rapid to produce a high selectivity of formic acid even though the low glycerol conversion.This work presents an opportunity to study Ni NCs for the efficient electrocatalytic oxidation of biomass-derived polyhydroxyl platform molecules to produce value-added carboxylic acids. 展开更多
关键词 nickel nanocluster Well-defined structure Electrocatalysis Glycerol oxidation Formic acid
在线阅读 下载PDF
S-vacancies and iron-doped nickel sulfide nanosheets constructed by a solvothermal method as efficient catalysts for electrocatalytic oxygen evolution
19
作者 Zeyi Wang Shuling Liu +5 位作者 Yujie Ma Junyu Guo Bowen Xin Chenglong Wang Chao Wang Jianbo Tong 《Journal of Energy Chemistry》 2025年第6期872-884,I0018,共14页
The development of high-performance and stable electrocatalysts for oxygen evolution reaction(OER)is essential to improve the overall efficiency of water splitting.Here,S-vacancies and iron-doped nickel sulfide nanosh... The development of high-performance and stable electrocatalysts for oxygen evolution reaction(OER)is essential to improve the overall efficiency of water splitting.Here,S-vacancies and iron-doped nickel sulfide nanosheets(Vs-Ni_(2)Fe_(1)S_(2)/NF)were successfully prepared on the surface of nickel foam via solvothermal reaction of nickel-iron layered double hydroxide with sublimed sulfur added with sodium borohydride.Under the synergistic regulation of iron-doped and S-vacancies,Vs-Ni_(2)Fe_(1)S_(2)/NF shows excellent electrocatalytic performance and long-term durability.To reach current densities of 10 and500 mA cm^(-2),Vs-Ni_(2)Fe_(1)S_(2)/NF requires only 185(±5)and 248(±5)mV overpotential,respectively,and can maintain long stability for 350 h at 500 mA cm^(-2).The change of the mechanical pathway from adsorbate evolution mechanism to lattice oxygen oxidation mechanism is due to the increased acidity of the Ni site in Vs-Ni_(2)Fe_(1)S_(2)/NF,which facilitates the decouped proton and electron transfer process.Density functional calculation results show that the introduction of Fe atoms and S vacancies in Ni3S_(2)can enhance the conductivity of the intermediates by regulating the electronic structure of the intermediates,optimize the adsorption or desorption energy,and thus significantly improve the OER activity.For Vs-Ni_(2)Fe_(1)S_(2)/NF(+,-)cell,a voltage of 1.56 V is required to achieve 10 mA cm^(-2).In addition,Vs-Ni_(2)Fe_(1)S_(2)/NF catalyst also showed low overpotential(270 mV at 100 mA cm^(-2))and high alkaline tolerance(100 h at 100 mA cm^(-2))at 30 wt%KOH of 70℃.This shows that it has potential industrial application. 展开更多
关键词 NiFe-layered double hydroxide Iron-doped nickel sulfide S-vacancies Oxygen evolution Electrocatalysis
在线阅读 下载PDF
Green and efficient mineral phase transformation of saprolitic nickel laterite ore through fluidized pre-heating and hydrogen-based pre-reduction processes
20
作者 FAN Qing-long YUAN Shuai +2 位作者 LI Yan-jun HE Jia-hao WU Zi-jian 《Journal of Central South University》 2025年第9期3610-3628,共19页
Nickel laterite ore is an important nickel-bearing mineral.Research on pre-heating and hydrogen pre-reduction in the pyrometallurgical process of nickel laterite ore is very limited,especially when using fluidized bed... Nickel laterite ore is an important nickel-bearing mineral.Research on pre-heating and hydrogen pre-reduction in the pyrometallurgical process of nickel laterite ore is very limited,especially when using fluidized bed roasting.This study systematically explores the mechanisms of fluidized bed pre-heating treatment and hydrogen pre-reduction in the roasting process of saprolitic nickel laterite ore.According to single-factor experiment results,the appropriate pre-heating and pre-reduction conditions were a pre-heating temperature of 700℃,a pre-heating time of 30 min,a pre-reduction temperature of 700℃,a pre-reduction time of 30 min,and a hydrogen concentration of 80%.Then,the nickel metallization rate and iron metallization rate reached 90.56%and 41.31%,respectively.Various analytical and testing methods were employed to study the changes in phase composition,magnetism,surface element valence states,and microstructure of nickel laterite ore during fluidized pre-heating and pre-reduction.The study shows that hydrogen can achieve nickel reduction at relatively low temperatures.It was also found that pre-heating treatment of nickel laterite ore is beneficial.Pre-heating opens up the mineral structures of serpentine and limonite,allowing the reducing gas and nickel to interact quickly during the reduction process,enhancing the pre-reduction process. 展开更多
关键词 nickel laterite ore FLUIDIZATION hydrogen pre-reduction phase transformation microstructure
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部