A series of phosphorylation and blank CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y catalysts prepared by extrusion molding were tested for NH_3-SCR of NO, and were characterized by techniques of X-ray diffractio...A series of phosphorylation and blank CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y catalysts prepared by extrusion molding were tested for NH_3-SCR of NO, and were characterized by techniques of X-ray diffraction(XRD), Brumauer-Emmett-Teller(N_2-BET), environmental scanning electron microscope(ESEM), temperature programmed reduction(H_2-TPR) and temperature programmed desorption(NH_3-TPD). Effects of phosphorylation on catalytic activity and sulfur-resisting performance of the CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y for NH_3-SCR of NO were mainly studied. Results showed that the phosphorylation improved the catalytic activity and sulfur-resisting performance in an active temperature window of 300–440 °C, and the phosphorylation catalyst with 0.4 wt.% H_3PO_4 exhibited the best catalytic performance and the strongest sulfur-resisting performance. Analysis showed that the phosphorylation increased specific surface area, enhanced the surface acidity and improved redox properties.展开更多
NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.A...NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.An innovative V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst for NO_(x)removal was prepared in this study.The influences of Ce and Ta in the V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst on the SCR performance and physicochemical properties were investigated.The V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst not only exhibited excellent SCR activity in a wide temperature window,but also presented strong resistance to H_(2)Oand SO_(2)at 275◦C.A series of characterizationmethods was used to study the catalysts,including H2-temperature programmed reduction,X-ray photoelectron spectroscopy,NH_(3)-temperature programmed desorption,etc.It was discovered that a synergistic effect existed between Ce and Ta species.The introduction of Ce and Ta enlarged the specific surface area,increased the amount of acid sites and the ratio of Ce^(3+),(V^(3+)+V^(4+))and Oα,and strengthened the redox capability which were related to synergistic effect between Ce and Ta species,significantly improving the NH_(3)-SCR activity.展开更多
Hydrocarbons(HCs)exert toxic effects on the activity of Cu-based zeolite catalysts for NH_(3)-SCR on diesel vehicles.This study inve stigated the hydrocarbon resistance of both fresh and hydrothermally aged high-silic...Hydrocarbons(HCs)exert toxic effects on the activity of Cu-based zeolite catalysts for NH_(3)-SCR on diesel vehicles.This study inve stigated the hydrocarbon resistance of both fresh and hydrothermally aged high-silica Cu-SSZ-16 catalysts.It was found that low-temperature activity of Cu-SSZ-16 catalyst decreased after C_(3)H_(6) poisoning,which was mainly due to the blockage of pore channels and the coverage of Cu active sites as well as acid sites by the formation of carbon deposits.Additionally,[Cu(OH)]^(+)-Z was proposed to be more easily affected by C_(3)H_(6) poisoning than Cu^(2+)-2Z.Hydrothermally aged Cu-SSZ-16 presented better C_(3)H_(6) resistance than the fresh catalyst since less carbon deposits were accumulated and[Cu(OH)]^(+)-Z species were partially transformed to more-stable Cu^(2+)-2Z in the aged sample.This was probably because of the reduction of acid sites and the formation of CuO_(x),which enhanced the oxidation of C_(3)H_(6),thereby inhibiting the formation of carbon deposits.In addition,the coverage of the active Cu species also influenced the adsorption and oxidation of NO,causing a decrease in low-temperature activity.Thus,the low-temperature activity could be fully recovered by hydrothermal treatment at 500℃due to the removal of carbon deposits and recovery of Cu active sites as well as acid sites.In summary,high-silica CuSSZ-16,with high resistance to HCs and excellent hydrothermal stability,is a competitive candidate as a catalyst for the NH_(3)-SCR reaction in practical application.展开更多
Based on the previous findings that the presence of hydroxyl groups on the outer surface is crucial for maintaining skeletal stability,we propose a strategy modified Cu/SAPO-34 using Pr ions in this study.Therefore,we...Based on the previous findings that the presence of hydroxyl groups on the outer surface is crucial for maintaining skeletal stability,we propose a strategy modified Cu/SAPO-34 using Pr ions in this study.Therefore,we conducted several measurements to investigate the effect of Pr ions on the lowtemperature hydrothermal stability of Cu/SAPO-34.We find that Pr exists only on the surface of Cu/SAPO-34 as ions and oxides,with Pr^(3+)ions playing a protective role in occupying surface acidic sites.The addition of small amounts of Pr leads to the re-dispersion of Cu,resulting in improved lowtemperature selective catalytic reduction(SCR)activity in the as-synthesized samples.Furthermore,it enhances the resistance to decomposition of the Si-(OH)-Al framework during low-temperature hydrothermal aging,thereby preserving the framework structure and allowing detached active Cu species to return to exchangeable positions,ultimately restoring SCR activity.However,as the Pr content increases,the enhanced acidity causes some structural damage,gradually weakening the protective effect.Our work demonstrates that Pr modification is a simple and effective solution to the issue of poor lowtemperature hydrothermal stability in Cu/SAPO-34,providing a promising way for the application of light rare earth elements.展开更多
Catalytic activity and hydrothermal stability are both crucial for the application of the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)catalyst in diesel vehicles.In this study,a tin(Sn)-modified Ce-N...Catalytic activity and hydrothermal stability are both crucial for the application of the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)catalyst in diesel vehicles.In this study,a tin(Sn)-modified Ce-Nb mixed-oxide catalyst was synthesized as an NH_(3)-SCR catalyst for NO_(x)emission control.After the intro-duction of Sn,both the NH_(3)-SCR activity and the hydrothermal stability of the catalyst were remarkably promoted.Even after hydrothermal aging at 1000℃,the developed Ce_(1)Sn_(2)Nb_(1)O_(x)catalyst achieved more than 90%NO_(x)conversion at 325-500℃.Various methods,including N2-physisorption,X-ray diffraction,in-situ high-temperature X-ray diffraction,high-resolution transmission electron microscopy,X-ray pho-toelectron spectroscopy,X-ray absorption fine-structure spectroscopy,temperature-programmed reduc-tion of hydrogen,temperature-programmed desorption of ammonia,and density functional theory calculations were used to investigate the promotional effects induced by the Sn species.The characteri-zation results showed that the addition of Sn not only promoted the formation of the Ce-Nb active phase but also improved its thermal stability,contributing to the excellent NH_(3)-SCR performance and hydrothermal stability.This study provides an excellent sintering-resistance catalyst for the application of diesel engine NO_(x)emission control.展开更多
Ammonia Selective Catalytic Reduction(NHs-SCR)technology has been employed to eliminate NO_(x) from diesel engine exhaust,with Cu-SSZ-13 serving as the commercial catalyst.The greenhouse gas N_(2)O is produced as a by...Ammonia Selective Catalytic Reduction(NHs-SCR)technology has been employed to eliminate NO_(x) from diesel engine exhaust,with Cu-SSZ-13 serving as the commercial catalyst.The greenhouse gas N_(2)O is produced as a byproduct when using Cu-SSZ-13 as the NH_(3)-SCR catalyst.To achieve synergistic control of pollutants and greenhouse gases in diesel engine exhaust,rational design of Cu-SSZ-13 catalysts is required.In this study,the effect of Brønsted acid sites in Cu-SSZ-13 catalysts on the formation of N_(2)O was investigated.Mild thermal treatmentwas innovatively employed to prepare Cu-SSZ-13 catalysts with different amounts of Brønsted acid sites.EPR,H_(2)-TPR,NH_(3)-TPD,NMR were utilized to determine that the Brønsted acid sites were modified while the Cu species remained unchanged.Thereby an accurate assessment of the influence of Brønsted acid sites on N_(2)O formation could be achieved.Our results showed that Cu-SSZ-13 with more Brønsted acid sites produced less N_(2)O during the NH_(3)-SCR reaction.In the low-temperature region,the presence of framework acid sites facilitates the decomposition of the NH_(4)NO_(3)assisted by NO to form N_(2)and H_(2)O,reducing the formation of N_(2)O.In the high-temperature region,the Brønsted acid sites promote the decomposition of NH_(2)NO into N_(2)and H_(2)O.Meanwhile,the N_(2)O-SCR reaction can also be promoted by Brønsted acid sites,thereby decreasing N_(2)O emissions.This study suggests that in the future design and synthesis of Cu-SSZ-13 zeolites,attention should be paid to creating more Brønsted acid sites in Cu-SSZ-13 to reduce N_(2)O emissions.展开更多
NH_(3)-SCR is an effective mean of NOxremoval in the non-electric industry, however, the high activation temperature and poor H_(2)O resistance of SCR catalysts posed a barrier to its application. In this work, a seri...NH_(3)-SCR is an effective mean of NOxremoval in the non-electric industry, however, the high activation temperature and poor H_(2)O resistance of SCR catalysts posed a barrier to its application. In this work, a series of three-dimensionally ordered macroporous(3DOM) catalysts were synthesized via a colloidal crystal template(CCT) method, and various characterizations were carried out to explore the physicochemical property of catalysts. The experiment results reveal that Ce_(0.2)Mn_(0.2)/3DOM-TiO_(2) catalyst presents the excellent low-temperature catalytic activity of nearly 100% at 100℃. Furthermore, the enhanced H_(2)O resistance is achieved, certified by the unaffected NO remove at 150℃ in the participation of 15 vol% H_(2)O. The characterizations results exhibit that the improved dispersion of the active component and enhanced redox ability are conducive to the low-temperature catalytic activity. N_(2) adsorption and desorption experiments indicate that catalyst with 3DOM support possesses a larger pore diameter and specific surface area, which may weaken the condensation of H_(2)O in the microporosity of catalysts and improved the H_(2)O resistance of the catalyst. In situ DRIFTS results manifest that Ce_(0.2)Mn_(0.2)/3DOM-TiO_(2) catalyst could not only absorb more NH_(3) and generate more surface-active sites, but inhibit the competitive adsorption between H_(2)O and SCR reactants.展开更多
基金Project supported by the National Natural Science Foundation of China(51272105)Jiangsu Provincial Science and Technology Supporting Program(BE2013718)+1 种基金Research Subject of Environmental Protection Department of Jiangsu Province of China(2013006)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A series of phosphorylation and blank CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y catalysts prepared by extrusion molding were tested for NH_3-SCR of NO, and were characterized by techniques of X-ray diffraction(XRD), Brumauer-Emmett-Teller(N_2-BET), environmental scanning electron microscope(ESEM), temperature programmed reduction(H_2-TPR) and temperature programmed desorption(NH_3-TPD). Effects of phosphorylation on catalytic activity and sulfur-resisting performance of the CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y for NH_3-SCR of NO were mainly studied. Results showed that the phosphorylation improved the catalytic activity and sulfur-resisting performance in an active temperature window of 300–440 °C, and the phosphorylation catalyst with 0.4 wt.% H_3PO_4 exhibited the best catalytic performance and the strongest sulfur-resisting performance. Analysis showed that the phosphorylation increased specific surface area, enhanced the surface acidity and improved redox properties.
基金supported by the National Natural Science Foundation of China(Nos.22276182 and 22188102)the Natural Science Foundation of Fujian Province,China(No.2023J06048)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2021303).
文摘NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.An innovative V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst for NO_(x)removal was prepared in this study.The influences of Ce and Ta in the V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst on the SCR performance and physicochemical properties were investigated.The V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst not only exhibited excellent SCR activity in a wide temperature window,but also presented strong resistance to H_(2)Oand SO_(2)at 275◦C.A series of characterizationmethods was used to study the catalysts,including H2-temperature programmed reduction,X-ray photoelectron spectroscopy,NH_(3)-temperature programmed desorption,etc.It was discovered that a synergistic effect existed between Ce and Ta species.The introduction of Ce and Ta enlarged the specific surface area,increased the amount of acid sites and the ratio of Ce^(3+),(V^(3+)+V^(4+))and Oα,and strengthened the redox capability which were related to synergistic effect between Ce and Ta species,significantly improving the NH_(3)-SCR activity.
基金supported by the National Natural Science Foundation of China(Nos.52225004,22402220,and 52200136)the National Key R&D Program of China(Nos.2022YFC3704400 and 2022YFC3701804)the Construction Project of National New Material Production and Application Demonstration Platform(No.TC220H06N)。
文摘Hydrocarbons(HCs)exert toxic effects on the activity of Cu-based zeolite catalysts for NH_(3)-SCR on diesel vehicles.This study inve stigated the hydrocarbon resistance of both fresh and hydrothermally aged high-silica Cu-SSZ-16 catalysts.It was found that low-temperature activity of Cu-SSZ-16 catalyst decreased after C_(3)H_(6) poisoning,which was mainly due to the blockage of pore channels and the coverage of Cu active sites as well as acid sites by the formation of carbon deposits.Additionally,[Cu(OH)]^(+)-Z was proposed to be more easily affected by C_(3)H_(6) poisoning than Cu^(2+)-2Z.Hydrothermally aged Cu-SSZ-16 presented better C_(3)H_(6) resistance than the fresh catalyst since less carbon deposits were accumulated and[Cu(OH)]^(+)-Z species were partially transformed to more-stable Cu^(2+)-2Z in the aged sample.This was probably because of the reduction of acid sites and the formation of CuO_(x),which enhanced the oxidation of C_(3)H_(6),thereby inhibiting the formation of carbon deposits.In addition,the coverage of the active Cu species also influenced the adsorption and oxidation of NO,causing a decrease in low-temperature activity.Thus,the low-temperature activity could be fully recovered by hydrothermal treatment at 500℃due to the removal of carbon deposits and recovery of Cu active sites as well as acid sites.In summary,high-silica CuSSZ-16,with high resistance to HCs and excellent hydrothermal stability,is a competitive candidate as a catalyst for the NH_(3)-SCR reaction in practical application.
基金supported by the National Key R&D Program of China(2021YFB3503200)the Innovative Research Groups of the National Natural Science Foundation of China(51921004)+1 种基金Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)the Key R&D project of Shandong Province(2021CXGC010703,2022CXGC020311)。
文摘Based on the previous findings that the presence of hydroxyl groups on the outer surface is crucial for maintaining skeletal stability,we propose a strategy modified Cu/SAPO-34 using Pr ions in this study.Therefore,we conducted several measurements to investigate the effect of Pr ions on the lowtemperature hydrothermal stability of Cu/SAPO-34.We find that Pr exists only on the surface of Cu/SAPO-34 as ions and oxides,with Pr^(3+)ions playing a protective role in occupying surface acidic sites.The addition of small amounts of Pr leads to the re-dispersion of Cu,resulting in improved lowtemperature selective catalytic reduction(SCR)activity in the as-synthesized samples.Furthermore,it enhances the resistance to decomposition of the Si-(OH)-Al framework during low-temperature hydrothermal aging,thereby preserving the framework structure and allowing detached active Cu species to return to exchangeable positions,ultimately restoring SCR activity.However,as the Pr content increases,the enhanced acidity causes some structural damage,gradually weakening the protective effect.Our work demonstrates that Pr modification is a simple and effective solution to the issue of poor lowtemperature hydrothermal stability in Cu/SAPO-34,providing a promising way for the application of light rare earth elements.
基金supported by the National Natural Science Foundation of China(52225004 and 22276202)the National Key Research and Development Program of China(2022YFC3701804)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2019045).
文摘Catalytic activity and hydrothermal stability are both crucial for the application of the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)catalyst in diesel vehicles.In this study,a tin(Sn)-modified Ce-Nb mixed-oxide catalyst was synthesized as an NH_(3)-SCR catalyst for NO_(x)emission control.After the intro-duction of Sn,both the NH_(3)-SCR activity and the hydrothermal stability of the catalyst were remarkably promoted.Even after hydrothermal aging at 1000℃,the developed Ce_(1)Sn_(2)Nb_(1)O_(x)catalyst achieved more than 90%NO_(x)conversion at 325-500℃.Various methods,including N2-physisorption,X-ray diffraction,in-situ high-temperature X-ray diffraction,high-resolution transmission electron microscopy,X-ray pho-toelectron spectroscopy,X-ray absorption fine-structure spectroscopy,temperature-programmed reduc-tion of hydrogen,temperature-programmed desorption of ammonia,and density functional theory calculations were used to investigate the promotional effects induced by the Sn species.The characteri-zation results showed that the addition of Sn not only promoted the formation of the Ce-Nb active phase but also improved its thermal stability,contributing to the excellent NH_(3)-SCR performance and hydrothermal stability.This study provides an excellent sintering-resistance catalyst for the application of diesel engine NO_(x)emission control.
基金supported by the National Key R&D Program of China(Nos.2023YFC3707200 and 2022YFC3704400)the National Natural Science Foundation of China(Nos.52200136,22402220,and 52225004)Hangzhou Qianjiang Distinguished Experts Project.
文摘Ammonia Selective Catalytic Reduction(NHs-SCR)technology has been employed to eliminate NO_(x) from diesel engine exhaust,with Cu-SSZ-13 serving as the commercial catalyst.The greenhouse gas N_(2)O is produced as a byproduct when using Cu-SSZ-13 as the NH_(3)-SCR catalyst.To achieve synergistic control of pollutants and greenhouse gases in diesel engine exhaust,rational design of Cu-SSZ-13 catalysts is required.In this study,the effect of Brønsted acid sites in Cu-SSZ-13 catalysts on the formation of N_(2)O was investigated.Mild thermal treatmentwas innovatively employed to prepare Cu-SSZ-13 catalysts with different amounts of Brønsted acid sites.EPR,H_(2)-TPR,NH_(3)-TPD,NMR were utilized to determine that the Brønsted acid sites were modified while the Cu species remained unchanged.Thereby an accurate assessment of the influence of Brønsted acid sites on N_(2)O formation could be achieved.Our results showed that Cu-SSZ-13 with more Brønsted acid sites produced less N_(2)O during the NH_(3)-SCR reaction.In the low-temperature region,the presence of framework acid sites facilitates the decomposition of the NH_(4)NO_(3)assisted by NO to form N_(2)and H_(2)O,reducing the formation of N_(2)O.In the high-temperature region,the Brønsted acid sites promote the decomposition of NH_(2)NO into N_(2)and H_(2)O.Meanwhile,the N_(2)O-SCR reaction can also be promoted by Brønsted acid sites,thereby decreasing N_(2)O emissions.This study suggests that in the future design and synthesis of Cu-SSZ-13 zeolites,attention should be paid to creating more Brønsted acid sites in Cu-SSZ-13 to reduce N_(2)O emissions.
基金Project supported by National Key Research and Development Program of China(2021YFB3500601)。
文摘NH_(3)-SCR is an effective mean of NOxremoval in the non-electric industry, however, the high activation temperature and poor H_(2)O resistance of SCR catalysts posed a barrier to its application. In this work, a series of three-dimensionally ordered macroporous(3DOM) catalysts were synthesized via a colloidal crystal template(CCT) method, and various characterizations were carried out to explore the physicochemical property of catalysts. The experiment results reveal that Ce_(0.2)Mn_(0.2)/3DOM-TiO_(2) catalyst presents the excellent low-temperature catalytic activity of nearly 100% at 100℃. Furthermore, the enhanced H_(2)O resistance is achieved, certified by the unaffected NO remove at 150℃ in the participation of 15 vol% H_(2)O. The characterizations results exhibit that the improved dispersion of the active component and enhanced redox ability are conducive to the low-temperature catalytic activity. N_(2) adsorption and desorption experiments indicate that catalyst with 3DOM support possesses a larger pore diameter and specific surface area, which may weaken the condensation of H_(2)O in the microporosity of catalysts and improved the H_(2)O resistance of the catalyst. In situ DRIFTS results manifest that Ce_(0.2)Mn_(0.2)/3DOM-TiO_(2) catalyst could not only absorb more NH_(3) and generate more surface-active sites, but inhibit the competitive adsorption between H_(2)O and SCR reactants.