A reconstruction strategy has been developed to synthesize Cu-SAPO-34 with a wide crystallization phase region,high solid yield,and tunable Si and Cu contents.Cu-rich SAPO-34 was prepared from a Cu-amine complex,which...A reconstruction strategy has been developed to synthesize Cu-SAPO-34 with a wide crystallization phase region,high solid yield,and tunable Si and Cu contents.Cu-rich SAPO-34 was prepared from a Cu-amine complex,which acted as a precursor and Cu source for the reconstruction synthesis.The role of the Cu-amine complex as a template was restricted,which allowed easier control over the Cu and Si contents than in the previously reported"one-pot"synthesis method.Characterization of the material revealed that the Si(4Al)coordination environment dominates the synthesized Cu-SAPO-34 catalysts.High-temperature hydrothermal treatment increased the isolated Cu2+content slightly,and the acid sites in the low-silica catalyst are more resistant to hydrothermal treatment than those of the existing catalysts.The obtained materials,especially the low-silica Cu-SAPO-34 sample,exhibit excellent catalytic activity and hydrothermal stability for the selective catalytic reduction of NOx by NH3(NH3-SCR).In addition,the influence of the catalyst acidity on the NH3-SCR reaction was also investigated and is discussed.The high synthetic efficiency and outstanding catalytic performance make Cu-SAPO-34 synthesized by the reconstruction method a promising catalyst for the NH3-SCR process.展开更多
CuFe-SSZ-13 catalyst showed excellent performance in the selective catalytic reduction of NO_x with NH_3(NH_3-SCR) for diesel engine exhaust purification. To investigate the effect of preparation methods on NH_3-SCR p...CuFe-SSZ-13 catalyst showed excellent performance in the selective catalytic reduction of NO_x with NH_3(NH_3-SCR) for diesel engine exhaust purification. To investigate the effect of preparation methods on NH_3-SCR performance, Fe was loaded into one-pot synthesized Cu-SSZ-13 catalysts through solid-state ion-exchange(SSIE), homogeneous deposition precipitation(HDP) and liquid ion-exchange(IE), respectively. Three CuFe-SSZ-13 catalysts showed similar SO_2 resistance, which was better than that of Cu-SSZ-13. The improvement was attributed to the protection of Fe species. Hydrothermal stability of three CuFe-SSZ-13 catalysts was significantly different, which was attributed to the state of active species caused by different preparation methods. Compared with the other two catalysts, more active species existed inside the zeolite pores of CuFe-SSZ-13 SSIE. During hydrothermal aging, the aggregation of these active species in the pores caused the collapse of catalyst structure, ultimately leading to the deactivation of CuFe-SSZ-13 SSIE. In contrast, Fe species was dispersed better on the surface over CuFe-SSZ-13 IE, enhancing the hydrothermal stability of catalysts. Consequently, Fe loading effectively improved the resistance of SO_2 and H_2O over Cu-SSZ-13. For CuFe-SSZ-13, large amounts of active species located inside the zeolite pores are not beneficial for the hydrothermal stability.展开更多
The catalytic activities of MnOx-WO3/TiO2 for selective catalytic reduction(SCR) of NO with NH3 were investigated in a wide range of temperature and reaction condition.It yielded a NOx conversion of 80.3%—99.6% and...The catalytic activities of MnOx-WO3/TiO2 for selective catalytic reduction(SCR) of NO with NH3 were investigated in a wide range of temperature and reaction condition.It yielded a NOx conversion of 80.3%—99.6% and a N2 product selectivity of 100%—98.7% during 100 °C to 350 °C at gas hourly space velocity(GHSV)=18900 h-1.In the presence of 0.01% SO2 and 6% H2O at 120 °C,the NOx conversion can maintain 98.5%.At 300 °C and with 0.07% SO2 in reactant stream,the NOx conversion stabilized at 99% as high as the commercial V-W/TiO2 catalyst's level.The steady-state kinetics study shows that O2 played a promoting role.In the presence of less than 1.5% O2,NOx conversion can increase sharply with the increase of O2 concentration.The reaction order was zero with respect to NH3 and first with respect to NO with excess O2 and H2O.The kinetics active energy(Ea) of Mn-W/TiO2 was calculated to be 6.24 kJ/mol according to the kinetic experiment at various temperatures,much lower than those of other catalysts reported in the literature.Mn-W/TiO2 is an excellent catalyst for SCR of NO with NH3 by now.展开更多
V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for N...V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.展开更多
文摘A reconstruction strategy has been developed to synthesize Cu-SAPO-34 with a wide crystallization phase region,high solid yield,and tunable Si and Cu contents.Cu-rich SAPO-34 was prepared from a Cu-amine complex,which acted as a precursor and Cu source for the reconstruction synthesis.The role of the Cu-amine complex as a template was restricted,which allowed easier control over the Cu and Si contents than in the previously reported"one-pot"synthesis method.Characterization of the material revealed that the Si(4Al)coordination environment dominates the synthesized Cu-SAPO-34 catalysts.High-temperature hydrothermal treatment increased the isolated Cu2+content slightly,and the acid sites in the low-silica catalyst are more resistant to hydrothermal treatment than those of the existing catalysts.The obtained materials,especially the low-silica Cu-SAPO-34 sample,exhibit excellent catalytic activity and hydrothermal stability for the selective catalytic reduction of NOx by NH3(NH3-SCR).In addition,the influence of the catalyst acidity on the NH3-SCR reaction was also investigated and is discussed.The high synthetic efficiency and outstanding catalytic performance make Cu-SAPO-34 synthesized by the reconstruction method a promising catalyst for the NH3-SCR process.
基金supported by the National Natural Science Foundation of China(No.51508231)
文摘CuFe-SSZ-13 catalyst showed excellent performance in the selective catalytic reduction of NO_x with NH_3(NH_3-SCR) for diesel engine exhaust purification. To investigate the effect of preparation methods on NH_3-SCR performance, Fe was loaded into one-pot synthesized Cu-SSZ-13 catalysts through solid-state ion-exchange(SSIE), homogeneous deposition precipitation(HDP) and liquid ion-exchange(IE), respectively. Three CuFe-SSZ-13 catalysts showed similar SO_2 resistance, which was better than that of Cu-SSZ-13. The improvement was attributed to the protection of Fe species. Hydrothermal stability of three CuFe-SSZ-13 catalysts was significantly different, which was attributed to the state of active species caused by different preparation methods. Compared with the other two catalysts, more active species existed inside the zeolite pores of CuFe-SSZ-13 SSIE. During hydrothermal aging, the aggregation of these active species in the pores caused the collapse of catalyst structure, ultimately leading to the deactivation of CuFe-SSZ-13 SSIE. In contrast, Fe species was dispersed better on the surface over CuFe-SSZ-13 IE, enhancing the hydrothermal stability of catalysts. Consequently, Fe loading effectively improved the resistance of SO_2 and H_2O over Cu-SSZ-13. For CuFe-SSZ-13, large amounts of active species located inside the zeolite pores are not beneficial for the hydrothermal stability.
文摘The catalytic activities of MnOx-WO3/TiO2 for selective catalytic reduction(SCR) of NO with NH3 were investigated in a wide range of temperature and reaction condition.It yielded a NOx conversion of 80.3%—99.6% and a N2 product selectivity of 100%—98.7% during 100 °C to 350 °C at gas hourly space velocity(GHSV)=18900 h-1.In the presence of 0.01% SO2 and 6% H2O at 120 °C,the NOx conversion can maintain 98.5%.At 300 °C and with 0.07% SO2 in reactant stream,the NOx conversion stabilized at 99% as high as the commercial V-W/TiO2 catalyst's level.The steady-state kinetics study shows that O2 played a promoting role.In the presence of less than 1.5% O2,NOx conversion can increase sharply with the increase of O2 concentration.The reaction order was zero with respect to NH3 and first with respect to NO with excess O2 and H2O.The kinetics active energy(Ea) of Mn-W/TiO2 was calculated to be 6.24 kJ/mol according to the kinetic experiment at various temperatures,much lower than those of other catalysts reported in the literature.Mn-W/TiO2 is an excellent catalyst for SCR of NO with NH3 by now.
基金supported by the National Natural Science Foundation of China (51372137)the National High Technology Research and Development Program of China (863 Program,2015AA034603)~~
文摘V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.
基金Supported by Fundamental Research Funds for Central Universities(HEUCF201403002)Advanced Technique Project Funds of the Manufacture and Information Ministry