The efficiency of organic semiconductor photocatalysts is typically limited by their capability of photogenerated electron transport.Herein,a photocatalyst is proposed initially through the specific axial coordination...The efficiency of organic semiconductor photocatalysts is typically limited by their capability of photogenerated electron transport.Herein,a photocatalyst is proposed initially through the specific axial coordination interaction between imidazole-C_(60)(ImC_(60))and zinc tetraphenyl porphyrin(ZnTPP)named ImC_(60)-ZnTPP.Subsequently,detailed structural characterizations along with theoretical calculation reveal that the unique ImC_(60)-ZnTPP possesses head-to-tail stacking supra-structures,leading to the formation of a continuous array of C_(60)–C_(60) with ultrashort spacing and ensuring strongπ–πinteractions and homogeneous electronic coupling,which could tremendously promote electron transport along the(−111)crystal facet of ImC_(60)-ZnTPP.Consequently,compared to other fullerene-based photocatalysts,ImC_(60)-ZnTPP shows exceptional photocatalytic hydrogen production activity,with an efficiency of up to 80.95 mmol g^(-1) h^(-1).This study provides a novel strategy to design highly efficient fullerene-based photocatalytic systems for solar-driven energy conversion and extend their artificial photosynthetic use.展开更多
A one-pot method for the preparation of g-C3N4/reduced graphene oxide(rGO) composite photocatalysts with controllable band structures is presented.The photocatalysts are characterized by Fouirer transform infrared s...A one-pot method for the preparation of g-C3N4/reduced graphene oxide(rGO) composite photocatalysts with controllable band structures is presented.The photocatalysts are characterized by Fouirer transform infrared spectroscopy,X-ray diffraction,scanning electron microscope,transmission electron microscope,and Mott-Schottky analysis.The valance band(VB) of g-C3N4 exhibits a noticeable positive shift upon hybridizing with rGO,and thus results in a strong photo-oxidation ability.The g-C3N4/rGO composites show a higher photodegradation activity for 2,4-dichlorophenol(2,4-DCP) and rhodamine B(RhB) under visible light irradiation(λ≥420 ran).The g-C3N4/rGO-1sample exhibits the highest photocatalytic activity,which is 1.49 and 1.52 times higher than that of bulk g-C3N4 for 2,4-DCP and 1.52 times degradation,respectively.The enhanced photocatalytic activity for g-C3N4 originates from the improved visible light usage,enhanced electronic conductivity and photo-oxidation ability by the formed strong π-π stacking interactions with rGO.展开更多
基金supported by the National Natural Science Foundation of China(52322204,52072374,52272052)the National Key R&D Program of China(Grant No.2022YFA1205900)the Youth Innovation Promotion Association of CAS(Y2022015).
文摘The efficiency of organic semiconductor photocatalysts is typically limited by their capability of photogenerated electron transport.Herein,a photocatalyst is proposed initially through the specific axial coordination interaction between imidazole-C_(60)(ImC_(60))and zinc tetraphenyl porphyrin(ZnTPP)named ImC_(60)-ZnTPP.Subsequently,detailed structural characterizations along with theoretical calculation reveal that the unique ImC_(60)-ZnTPP possesses head-to-tail stacking supra-structures,leading to the formation of a continuous array of C_(60)–C_(60) with ultrashort spacing and ensuring strongπ–πinteractions and homogeneous electronic coupling,which could tremendously promote electron transport along the(−111)crystal facet of ImC_(60)-ZnTPP.Consequently,compared to other fullerene-based photocatalysts,ImC_(60)-ZnTPP shows exceptional photocatalytic hydrogen production activity,with an efficiency of up to 80.95 mmol g^(-1) h^(-1).This study provides a novel strategy to design highly efficient fullerene-based photocatalytic systems for solar-driven energy conversion and extend their artificial photosynthetic use.
基金supported by the National Natural Science Foundation of China (21577132)the Fundamental Research Funds for the Central Universities (2652015225)+1 种基金National High Technology Research and Development Program of China (2012AA062701)Students Innovation and Entrepreneurship Training Program 2015 of China University of Geosciences (201511415069),Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes~~
文摘A one-pot method for the preparation of g-C3N4/reduced graphene oxide(rGO) composite photocatalysts with controllable band structures is presented.The photocatalysts are characterized by Fouirer transform infrared spectroscopy,X-ray diffraction,scanning electron microscope,transmission electron microscope,and Mott-Schottky analysis.The valance band(VB) of g-C3N4 exhibits a noticeable positive shift upon hybridizing with rGO,and thus results in a strong photo-oxidation ability.The g-C3N4/rGO composites show a higher photodegradation activity for 2,4-dichlorophenol(2,4-DCP) and rhodamine B(RhB) under visible light irradiation(λ≥420 ran).The g-C3N4/rGO-1sample exhibits the highest photocatalytic activity,which is 1.49 and 1.52 times higher than that of bulk g-C3N4 for 2,4-DCP and 1.52 times degradation,respectively.The enhanced photocatalytic activity for g-C3N4 originates from the improved visible light usage,enhanced electronic conductivity and photo-oxidation ability by the formed strong π-π stacking interactions with rGO.