空天地一体化网络作为6G技术的关键组成,在整合天基、空基和地基网络时,面临节点异构性、业务多样性等挑战,进而引发资源分配、竞争及故障风险等问题。基于此,聚焦基于软件定义网络(software defined network,SDN)与网络功能虚拟化(netw...空天地一体化网络作为6G技术的关键组成,在整合天基、空基和地基网络时,面临节点异构性、业务多样性等挑战,进而引发资源分配、竞争及故障风险等问题。基于此,聚焦基于软件定义网络(software defined network,SDN)与网络功能虚拟化(network functions virtualization,NFV)的空天地一体化网络任务部署与恢复,首先阐述了空天地一体化网络系统架构,介绍了各层网络构成、SDN和NFV原理及其相关应用,然后,针对上述挑战,以服务功能链技术为抓手,提出了面向任务的服务功能链优化部署、利用智能算法实现动态调度、通过匹配博弈算法完成失效恢复等策略,最后,构建了一个用例,设定节点部署、服务功能链建模等,验证了所提策略在提升服务功能链完成效率以及应对资源故障方面的有效性,旨在为空天地一体化网络资源管理提供理论基础。展开更多
为提高现阶段广播网络的运营效率,在降低广播网络运维成本的同时提升直播信号的质量和用户体验,提出在电视广播中的直播场景及广播信号处理环节分别部署软件定义网络(Software Defined Network,SDN)和网络功能虚拟化(Network Function V...为提高现阶段广播网络的运营效率,在降低广播网络运维成本的同时提升直播信号的质量和用户体验,提出在电视广播中的直播场景及广播信号处理环节分别部署软件定义网络(Software Defined Network,SDN)和网络功能虚拟化(Network Function Virtualization,NFV)网络架构。利用回传网络采集多场馆的信号,根据实时流量情况动态分配网络资源,同时在应对突发事件或临时增加直播需求时,SDN快速重新配置网络,优化调度直播流量。基于SDN架构,在广播信号处理环节通过NFV技术虚拟化视频编转码和用户权限认证,确保信号处理和分发环节的高效性。展开更多
Along with the completion of the development of 4G technologies, the global mobile community starts the study of the next generation technologies, i.e. 5G technologies. This paper proposes a new flexible architecture ...Along with the completion of the development of 4G technologies, the global mobile community starts the study of the next generation technologies, i.e. 5G technologies. This paper proposes a new flexible architecture for 5G mobile networks based on Network Function Virtualization(NFV) and Software Defined Network(SDN) technologies, which is adaptable to use cases and scenarios. Then implementation reference architecture and some typical 5G network deployment cases are discussed. Besides, some key issues for further study are also indicated at the end.展开更多
The demand for 5G services and applications is driving the change of network architecture.The mobile edge computing(MEC)technology combines the mobile network technology with cloud computing and virtualization,and is ...The demand for 5G services and applications is driving the change of network architecture.The mobile edge computing(MEC)technology combines the mobile network technology with cloud computing and virtualization,and is one of the key technologies for 5G networks.Compared to network function virtualization(NFV),another critical enabler of 5G networks,MEC reduces latency and enhances the offered capacity.In this paper,we discuss the combination of the two technologies and propose a new architecture.Moreover,we list the application scenarios using the proposed architecture.展开更多
With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat...With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.展开更多
With emerging large volume and diverse heterogeneity of Internet of Things (IoT) applications, the one-size-fits-all design of the current 4G networks is no longer adequate to serve various types of IoT applications. ...With emerging large volume and diverse heterogeneity of Internet of Things (IoT) applications, the one-size-fits-all design of the current 4G networks is no longer adequate to serve various types of IoT applications. Consequently, the concepts of network slicing enabled by Network Function Virtualization (NFV) have been proposed in the upcoming 5G networks. 5G network slicing allows IoT applications of different QoS requirements to be served by different virtual networks. Moreover, these network slices are equipped with scalability that allows them to grow or shrink their instances of Virtual Network Functions (VNFs) when needed. However, all current research only focuses on scalability on a single network slice, which is the scalability at the VNF level only. Such a design will eventually reach the capacity limit of a single slice under stressful incoming traffic, and cause the breakdown of an IoT system. Therefore, we propose a new IoT scalability architecture in this research to provide scalability at the NS level and design a testbed to implement the proposed architecture in order to verify its effectiveness. For evaluation, three systems are compared for their throughput, response time, and CPU utilization under three different types of IoT traffic, including the single slice scaling system, the multiple slices scaling system and the hybrid scaling system where both single slicing and multiple slicing can be simultaneously applied. Due to the balanced tradeoff between slice scalability and resource availability, the hybrid scaling system turns out to perform the best in terms of throughput and response time with medium CPU utilization.展开更多
软件定义网络(Software Defined Network,SDN)和网络功能虚拟化(Network Function Virtualization,NFV)已经成为新一代网络体系结构的新范式。SDN和NFV可以有效地提高部署和管理服务功能链(Service Function Chains,SFCs)的灵活性。文...软件定义网络(Software Defined Network,SDN)和网络功能虚拟化(Network Function Virtualization,NFV)已经成为新一代网络体系结构的新范式。SDN和NFV可以有效地提高部署和管理服务功能链(Service Function Chains,SFCs)的灵活性。文中融合SDN和NFV,并应用到网络切片的资源优化中,为未来的5G三大业务场景实现定制服务的有效部署,提出了一种基于SDN和NFV的网络切片资源优化算法。首先针对5G uRLLC,eMBB,mMTC三大应用场景的不同业务需求,将底层的物理节点按照功能类型划分为三个虚拟子网的节点集合。然后根据不同应用场景的不同服务功能链的要求,分别对每一类的网络切片进行建模,形成混合整数线性规划的基于SDN和NFV的网络切片的数学模型,并提出了基于拉格朗日对偶分解的算法,将网络切片的数学模型转换为节点和链路的子问题,再对分解的子问题进行映射方案的求解。仿真结果表明,与以往算法相比,文中提出的算法在资源利用率、接受率、平均执行时间方面具有更好性能。展开更多
文摘空天地一体化网络作为6G技术的关键组成,在整合天基、空基和地基网络时,面临节点异构性、业务多样性等挑战,进而引发资源分配、竞争及故障风险等问题。基于此,聚焦基于软件定义网络(software defined network,SDN)与网络功能虚拟化(network functions virtualization,NFV)的空天地一体化网络任务部署与恢复,首先阐述了空天地一体化网络系统架构,介绍了各层网络构成、SDN和NFV原理及其相关应用,然后,针对上述挑战,以服务功能链技术为抓手,提出了面向任务的服务功能链优化部署、利用智能算法实现动态调度、通过匹配博弈算法完成失效恢复等策略,最后,构建了一个用例,设定节点部署、服务功能链建模等,验证了所提策略在提升服务功能链完成效率以及应对资源故障方面的有效性,旨在为空天地一体化网络资源管理提供理论基础。
文摘为提高现阶段广播网络的运营效率,在降低广播网络运维成本的同时提升直播信号的质量和用户体验,提出在电视广播中的直播场景及广播信号处理环节分别部署软件定义网络(Software Defined Network,SDN)和网络功能虚拟化(Network Function Virtualization,NFV)网络架构。利用回传网络采集多场馆的信号,根据实时流量情况动态分配网络资源,同时在应对突发事件或临时增加直播需求时,SDN快速重新配置网络,优化调度直播流量。基于SDN架构,在广播信号处理环节通过NFV技术虚拟化视频编转码和用户权限认证,确保信号处理和分发环节的高效性。
基金supported by the National Science and Technology Major Project No.2015ZX03002004
文摘Along with the completion of the development of 4G technologies, the global mobile community starts the study of the next generation technologies, i.e. 5G technologies. This paper proposes a new flexible architecture for 5G mobile networks based on Network Function Virtualization(NFV) and Software Defined Network(SDN) technologies, which is adaptable to use cases and scenarios. Then implementation reference architecture and some typical 5G network deployment cases are discussed. Besides, some key issues for further study are also indicated at the end.
文摘The demand for 5G services and applications is driving the change of network architecture.The mobile edge computing(MEC)technology combines the mobile network technology with cloud computing and virtualization,and is one of the key technologies for 5G networks.Compared to network function virtualization(NFV),another critical enabler of 5G networks,MEC reduces latency and enhances the offered capacity.In this paper,we discuss the combination of the two technologies and propose a new architecture.Moreover,we list the application scenarios using the proposed architecture.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Open project of Satellite Internet Key Laboratory in 2022(Project 3:Research on Spaceborne Lightweight Core Network and Intelligent Collaboration)the Beijing Natural Science Foundation under grant number L212003.
文摘With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.
文摘With emerging large volume and diverse heterogeneity of Internet of Things (IoT) applications, the one-size-fits-all design of the current 4G networks is no longer adequate to serve various types of IoT applications. Consequently, the concepts of network slicing enabled by Network Function Virtualization (NFV) have been proposed in the upcoming 5G networks. 5G network slicing allows IoT applications of different QoS requirements to be served by different virtual networks. Moreover, these network slices are equipped with scalability that allows them to grow or shrink their instances of Virtual Network Functions (VNFs) when needed. However, all current research only focuses on scalability on a single network slice, which is the scalability at the VNF level only. Such a design will eventually reach the capacity limit of a single slice under stressful incoming traffic, and cause the breakdown of an IoT system. Therefore, we propose a new IoT scalability architecture in this research to provide scalability at the NS level and design a testbed to implement the proposed architecture in order to verify its effectiveness. For evaluation, three systems are compared for their throughput, response time, and CPU utilization under three different types of IoT traffic, including the single slice scaling system, the multiple slices scaling system and the hybrid scaling system where both single slicing and multiple slicing can be simultaneously applied. Due to the balanced tradeoff between slice scalability and resource availability, the hybrid scaling system turns out to perform the best in terms of throughput and response time with medium CPU utilization.
文摘软件定义网络(Software Defined Network,SDN)和网络功能虚拟化(Network Function Virtualization,NFV)已经成为新一代网络体系结构的新范式。SDN和NFV可以有效地提高部署和管理服务功能链(Service Function Chains,SFCs)的灵活性。文中融合SDN和NFV,并应用到网络切片的资源优化中,为未来的5G三大业务场景实现定制服务的有效部署,提出了一种基于SDN和NFV的网络切片资源优化算法。首先针对5G uRLLC,eMBB,mMTC三大应用场景的不同业务需求,将底层的物理节点按照功能类型划分为三个虚拟子网的节点集合。然后根据不同应用场景的不同服务功能链的要求,分别对每一类的网络切片进行建模,形成混合整数线性规划的基于SDN和NFV的网络切片的数学模型,并提出了基于拉格朗日对偶分解的算法,将网络切片的数学模型转换为节点和链路的子问题,再对分解的子问题进行映射方案的求解。仿真结果表明,与以往算法相比,文中提出的算法在资源利用率、接受率、平均执行时间方面具有更好性能。