Cystic echinococcosis (CE) is a prevalent zoonotic disease caused by Echinococcus granulosus, with a cosmopolitan distribution. The parasite is transmitted cyclically between canines and numerous intermediate herbivor...Cystic echinococcosis (CE) is a prevalent zoonotic disease caused by Echinococcus granulosus, with a cosmopolitan distribution. The parasite is transmitted cyclically between canines and numerous intermediate herbivorous livestock animals. Also, other Taeniid tapeworms could infect domestic dogs and they pose significant veterinary and public health concerns worldwide. This study aimed to develop a sensitive molecular method for detecting Echinococcus spp. DNA in dog fecal samples using next-generation sequencing (NGS). A set of PCR primers targeting conserved regions of Taeniid tapeworms’ 18s rRNA genes was designed and tested for amplifying genomic DNA from various tapeworm species. The PCR system demonstrated high sensitivity, amplifying DNA from all tested tapeworm species, with differences observed in amplified band sizes. The primers were adapted for NGS analysis by adding forward and reverse adapters, enabling the sequencing of amplified DNA fragments. Application of the developed PCR system to dog fecal samples collected from Yatta town, Palestine, revealed the presence of E. granulosus DNA in five out of 50 samples. NGS analysis confirmed the specificity of the amplified DNA fragments, showing 98% - 99% similarity with the 18s rDNA gene of E. granulosus. This study demonstrates the utility of NGS-based molecular methods for accurate and sensitive detection of Echinococcus spp. in dog fecal samples, providing valuable insights for epidemiological surveillance and control programs of echinococcosis in endemic regions.展开更多
Next-generation sequencing(NGS) technology is capable of sequencing millions or billions of DNA molecules simultaneously.Therefore, it represents a promising tool for the analysis of molecular targets for the initial ...Next-generation sequencing(NGS) technology is capable of sequencing millions or billions of DNA molecules simultaneously.Therefore, it represents a promising tool for the analysis of molecular targets for the initial diagnosis of disease, monitoring of disease progression, and identifying the mechanism of drug resistance. On behalf of the Tumor Biomarker Committee of the Chinese Society of Clinical Oncology(CSCO) and the China Actionable Genome Consortium(CAGC), the present expert group hereby proposes advisory guidelines on clinical applications of NGS technology for the analysis of cancer driver genes for precision cancer therapy. This group comprises an assembly of laboratory cancer geneticists, clinical oncologists, bioinformaticians,pathologists, and other professionals. After multiple rounds of discussions and revisions, the expert group has reached a preliminary consensus on the need of NGS in clinical diagnosis, its regulation, and compliance standards in clinical sample collection. Moreover, it has prepared NGS criteria, the sequencing standard operation procedure(SOP), data analysis, report, and NGS platform certification and validation.展开更多
Gastric cancer(GC)is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide.There is an increasing understanding of the roles that genetic and epigenetic alterations...Gastric cancer(GC)is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide.There is an increasing understanding of the roles that genetic and epigenetic alterations play in GCs.Recent studies using nextgeneration sequencing(NGS)have revealed a number of potential cancer-driving genes in GC.Whole-exome sequencing of GC has identified recurrent somatic mutations in the chromatin remodeling gene ARID1A and alterations in the cell adhesion gene FAT4,a member of the cadherin gene family.Mutations in chromatin remodeling genes(ARID1A,MLL3 and MLL)have been found in 47%of GCs.Whole-genome sequencing and whole-transcriptome sequencing analyses have also discovered novel alterations in GC.Recent studies of cancer epigenetics have revealed widespread alterations in genes involved in the epigenetic machinery,such as DNA methylation,histone modifications,nucleosome positioning,noncoding RNAs and microRNAs.Recent advances in molecular research on GC have resulted in the introduction of new diagnostic and therapeutic strategies into clinical settings.The antihuman epidermal growth receptor 2(HER2)antibody trastuzumab has led to an era of personalized therapy in GC.In addition,ramucirumab,a monoclonal antibody targeting vascular endothelial growth factor receptor(VEGFR)-2,is the first biological treatment that showed survival benefits as a single-agent therapy in patients with advanced GC who progressed after firstline chemotherapy.Using NGS to systematically identify gene alterations in GC is a promising approach with remarkable potential for investigating the pathogenesis of GC and identifying novel therapeutic targets,as well as useful biomarkers.In this review,we will summarize the recent advances in the understanding of the molecular pathogenesis of GC,focusing on the potential use of these genetic and epigenetic alterations as diagnostic biomarkers and novel therapeutic targets.展开更多
This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future ...This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future platforms and bioinformatics. NGS technologies have demon- strated the capacity to sequence DNA at unprecedented speed, thereby enabling previously unimaginable scientific achievements and novel biological applications. But, the massive data produced by NGS also presents a significant challenge for data storage, analyses, and management solutions. Advanced bioinformatic tools are essential for the successful application of NGS technology. As evidenced throughout this review, NGS technologies will have a striking impact on genomic research and the entire biological field. With its ability to tackle the unsolved challenges unconquered by previous genomic technologies, NGS is likely to unravel the complexity of the human genome in terms of genetic variations, some of which may be confined to susceptible loci for some common human conditions. The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come.展开更多
Helicobacter pylori(H.pylori)infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers,mucosa associated tissue lymphoma and gastric ...Helicobacter pylori(H.pylori)infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers,mucosa associated tissue lymphoma and gastric adenocarcinoma.In recent years,an alarming increase in antimicrobial resistance and subsequently failing empiric H.pylori eradication therapies have been noted worldwide,also in many European countries.Therefore,rapid and accurate determination of H.pylori’s antibiotic susceptibility prior to the administration of eradication regimens becomes ever more important.Traditionally,detection of H.pylori and its antimicrobial resistance is done by culture and phenotypic drug susceptibility testing that are cumbersome with a long turn-around-time.Recent advances in diagnostics provide new tools,like real-time polymerase chain reaction(PCR)and line probe assays,to diagnose H.pylori infection and antimicrobial resistance to certain antibiotics,directly from clinical specimens.Moreover,high-throughput whole genome sequencing technologies allow the rapid analysis of the pathogen’s genome,thereby allowing identification of resistance mutations and associated antibiotic resistance.In the first part of this review,we will give an overview on currently available diagnostic methods for detection of H.pylori and its drug resistance and their implementation in H.pylori management.The second part of the review focusses on the use of next generation sequencing technology in H.pylori research.To this end,we conducted a literature search for original research articles in English using the terms“Helicobacter”,“transcriptomic”,“transcriptome”,“next generation sequencing”and“whole genome sequencing”.This review is aimed to bridge the gap between current diagnostic practice(histology,rapid urease test,H.pylori culture,PCR and line probe assays)and new sequencing technologies and their potential implementation in diagnostic laboratory settings in order to complement the currently recommended H.pylori management guidelines and subsequently improve public health.展开更多
文摘Cystic echinococcosis (CE) is a prevalent zoonotic disease caused by Echinococcus granulosus, with a cosmopolitan distribution. The parasite is transmitted cyclically between canines and numerous intermediate herbivorous livestock animals. Also, other Taeniid tapeworms could infect domestic dogs and they pose significant veterinary and public health concerns worldwide. This study aimed to develop a sensitive molecular method for detecting Echinococcus spp. DNA in dog fecal samples using next-generation sequencing (NGS). A set of PCR primers targeting conserved regions of Taeniid tapeworms’ 18s rRNA genes was designed and tested for amplifying genomic DNA from various tapeworm species. The PCR system demonstrated high sensitivity, amplifying DNA from all tested tapeworm species, with differences observed in amplified band sizes. The primers were adapted for NGS analysis by adding forward and reverse adapters, enabling the sequencing of amplified DNA fragments. Application of the developed PCR system to dog fecal samples collected from Yatta town, Palestine, revealed the presence of E. granulosus DNA in five out of 50 samples. NGS analysis confirmed the specificity of the amplified DNA fragments, showing 98% - 99% similarity with the 18s rDNA gene of E. granulosus. This study demonstrates the utility of NGS-based molecular methods for accurate and sensitive detection of Echinococcus spp. in dog fecal samples, providing valuable insights for epidemiological surveillance and control programs of echinococcosis in endemic regions.
基金supported by grants from Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer (Grant No. 2017B030314120)General Research Project of Guangzhou Science and Technology Bureau (Grant No. 201607010391)+1 种基金National Key Research and Development Program of China (Grant No. 2016YFC1303800)Guangdong Provincial Applied S&T R&D Program (Grant No. 2016B020237006)
文摘Next-generation sequencing(NGS) technology is capable of sequencing millions or billions of DNA molecules simultaneously.Therefore, it represents a promising tool for the analysis of molecular targets for the initial diagnosis of disease, monitoring of disease progression, and identifying the mechanism of drug resistance. On behalf of the Tumor Biomarker Committee of the Chinese Society of Clinical Oncology(CSCO) and the China Actionable Genome Consortium(CAGC), the present expert group hereby proposes advisory guidelines on clinical applications of NGS technology for the analysis of cancer driver genes for precision cancer therapy. This group comprises an assembly of laboratory cancer geneticists, clinical oncologists, bioinformaticians,pathologists, and other professionals. After multiple rounds of discussions and revisions, the expert group has reached a preliminary consensus on the need of NGS in clinical diagnosis, its regulation, and compliance standards in clinical sample collection. Moreover, it has prepared NGS criteria, the sequencing standard operation procedure(SOP), data analysis, report, and NGS platform certification and validation.
基金Supported by Grants-in-Aid for Scientific Research from the Ministry of Education,Culture,Sports,Science and Technology of Japan
文摘Gastric cancer(GC)is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide.There is an increasing understanding of the roles that genetic and epigenetic alterations play in GCs.Recent studies using nextgeneration sequencing(NGS)have revealed a number of potential cancer-driving genes in GC.Whole-exome sequencing of GC has identified recurrent somatic mutations in the chromatin remodeling gene ARID1A and alterations in the cell adhesion gene FAT4,a member of the cadherin gene family.Mutations in chromatin remodeling genes(ARID1A,MLL3 and MLL)have been found in 47%of GCs.Whole-genome sequencing and whole-transcriptome sequencing analyses have also discovered novel alterations in GC.Recent studies of cancer epigenetics have revealed widespread alterations in genes involved in the epigenetic machinery,such as DNA methylation,histone modifications,nucleosome positioning,noncoding RNAs and microRNAs.Recent advances in molecular research on GC have resulted in the introduction of new diagnostic and therapeutic strategies into clinical settings.The antihuman epidermal growth receptor 2(HER2)antibody trastuzumab has led to an era of personalized therapy in GC.In addition,ramucirumab,a monoclonal antibody targeting vascular endothelial growth factor receptor(VEGFR)-2,is the first biological treatment that showed survival benefits as a single-agent therapy in patients with advanced GC who progressed after firstline chemotherapy.Using NGS to systematically identify gene alterations in GC is a promising approach with remarkable potential for investigating the pathogenesis of GC and identifying novel therapeutic targets,as well as useful biomarkers.In this review,we will summarize the recent advances in the understanding of the molecular pathogenesis of GC,focusing on the potential use of these genetic and epigenetic alterations as diagnostic biomarkers and novel therapeutic targets.
基金supported by NINDS/NIH(JZ),Coldwell Foundation(JZ) and TTUHSC(JZ)
文摘This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future platforms and bioinformatics. NGS technologies have demon- strated the capacity to sequence DNA at unprecedented speed, thereby enabling previously unimaginable scientific achievements and novel biological applications. But, the massive data produced by NGS also presents a significant challenge for data storage, analyses, and management solutions. Advanced bioinformatic tools are essential for the successful application of NGS technology. As evidenced throughout this review, NGS technologies will have a striking impact on genomic research and the entire biological field. With its ability to tackle the unsolved challenges unconquered by previous genomic technologies, NGS is likely to unravel the complexity of the human genome in terms of genetic variations, some of which may be confined to susceptible loci for some common human conditions. The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come.
文摘Helicobacter pylori(H.pylori)infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers,mucosa associated tissue lymphoma and gastric adenocarcinoma.In recent years,an alarming increase in antimicrobial resistance and subsequently failing empiric H.pylori eradication therapies have been noted worldwide,also in many European countries.Therefore,rapid and accurate determination of H.pylori’s antibiotic susceptibility prior to the administration of eradication regimens becomes ever more important.Traditionally,detection of H.pylori and its antimicrobial resistance is done by culture and phenotypic drug susceptibility testing that are cumbersome with a long turn-around-time.Recent advances in diagnostics provide new tools,like real-time polymerase chain reaction(PCR)and line probe assays,to diagnose H.pylori infection and antimicrobial resistance to certain antibiotics,directly from clinical specimens.Moreover,high-throughput whole genome sequencing technologies allow the rapid analysis of the pathogen’s genome,thereby allowing identification of resistance mutations and associated antibiotic resistance.In the first part of this review,we will give an overview on currently available diagnostic methods for detection of H.pylori and its drug resistance and their implementation in H.pylori management.The second part of the review focusses on the use of next generation sequencing technology in H.pylori research.To this end,we conducted a literature search for original research articles in English using the terms“Helicobacter”,“transcriptomic”,“transcriptome”,“next generation sequencing”and“whole genome sequencing”.This review is aimed to bridge the gap between current diagnostic practice(histology,rapid urease test,H.pylori culture,PCR and line probe assays)and new sequencing technologies and their potential implementation in diagnostic laboratory settings in order to complement the currently recommended H.pylori management guidelines and subsequently improve public health.