We conjecture the existence of massless neutrinos that are in the line of Standard Model (unable to account for the neutrino mass) but have characteristics that are not accounted for the Standard Model: they use a sho...We conjecture the existence of massless neutrinos that are in the line of Standard Model (unable to account for the neutrino mass) but have characteristics that are not accounted for the Standard Model: they use a shorter radial path than the photon and possess bosonic flavors, considered like bosons instead of fermions. We call this theory “neutrino temporal oscillation”. Faced with some experimental comparisons solar neutrinos, neutrinos from SN 1987A, cosmological neutrinos, the theory gives better results, explanations and sense than the complicated theory of neutrino oscillations (transformism). The deficit of detection of solar neutrinos would have been blindly attributed to the “neutrino oscillation” by physicists who quickly concluded that the neutrino and the photon follow the same transverse path. The “OPERA” experiment which measured the speed of neutrinos in 2011 resulted, after a “superluminal” saga, in neutrino speeds consistent with the speed of light, in data that the three existing types of neutrinos cannot explain, with the final outcome of a fourth “sterile” neutrino with non-standard interaction. OPERA findings aren’t just in conflict with existing theory, but other measurements as well. For example, a study from the Kamiokande II experiment in Japan of the supernova SN1987A found that light and neutrinos that departed this exploded star arrived at Earth within hours of each other. Even though measurements of the neutrinos emitted by this supernova strongly suggest that their speeds differ from light by less than one part in a billion, the fact remains that two types of data were collected, and that only one was retained to be consistent with the existing theory. Thus, the OPERA observation is in conflicts with the result of SN1987A, which itself is highly doubtful. And what about the neutrinos and antineutrinos born during the big bang, except that they were never detected and there is nothing to indicate that their speed could be other than that of light. Neutrino physics seems sick, belief is transformed into evidence. The theory of “Neutrino temporal oscillation” shows hint that massless neutrinos can take a shortcut through the three spatial dimensions of the space-time that we know. It represents within the Standard Model an open window on a “new physics” that has a connection with physical reality.展开更多
The precise measurement of the antineutrino spectra produced by isotope fission in reactors is of great significance for studying neutrino oscillations,refining nuclear databases,and addressing the reactor antineutrin...The precise measurement of the antineutrino spectra produced by isotope fission in reactors is of great significance for studying neutrino oscillations,refining nuclear databases,and addressing the reactor antineutrino anomaly.In this paper,we report a method that utilizes a feedforward neural network(FNN)model to decompose the prompt energy spectrum observed in a short-baseline reactor neutrino experiment and extract the antineutrino spectra produced by the fission of major isotopes such as^(235)U,^(238)U,^(239)Pu,and^(241)Pu in the nuclear reactor.We present two training strategies for the model and compare them with the traditional X^(2) minimization method by applying them to the same set of pseudo-data corresponding to a total exposure of(2.9×5×1800)GW_(th)·tons·days.The results show that the FNN model not only converges faster and better during the fitting process but also achieves relative errors of less than 1%in the 2−8 MeV range in the extracted spectra,outperforming the X^(2) minimization method.The feasibility and superiority of this method were validated in the study.展开更多
Sterile neutrinos can influence the evolution of the Universe,and thus cosmological observations can be used to detect them.Future gravitational-wave(GW)observations can precisely measure absolute cosmological distanc...Sterile neutrinos can influence the evolution of the Universe,and thus cosmological observations can be used to detect them.Future gravitational-wave(GW)observations can precisely measure absolute cosmological distances,helping to break parameter degeneracies generated by traditional cosmological observations.This advancement can lead to much tighter constraints on sterile neutrino parameters.This work provides a preliminary forecast for detecting sterile neutrinos using third-generation GW detectors in combination with future shortγ-ray burst observations from a THESEUS-like telescope,an approach not previously explored in the literature.Both massless and massive sterile neutrinos are considered within theΛCDM cosmology.We find that using GW data can greatly enhance the detection capability for massless sterile neutrinos,reaching 3σlevel.For massive sterile neutrinos,GW data can also greatly assist in improving the parameter constraints,but it seems that effective detection is still not feasible.展开更多
The presence of background classical sources affects quantum field theory significantly in different ways.Neutrino oscillation is a phenomenon that confirms that neutrinos are massive fermions in nature,a celebrated r...The presence of background classical sources affects quantum field theory significantly in different ways.Neutrino oscillation is a phenomenon that confirms that neutrinos are massive fermions in nature,a celebrated result in modern physics.Neutrino oscillation plays an important role in many astrophysical observations.However,the interactions between the background classical sources with neutrinos are not often considered.In the present article,we show the effect of some classical sources,namely matter currents,electromagnetic waves,torsion,and gravitational waves on neutrino oscillation.It is shown explicitly that the above sources can change the helicity state of neutrinos during neutrino oscillation.展开更多
We study constraints on neutrino properties for a class of bi-large mixing See-Saw mass matrices with texture zeros and with the related Dirac neutrino mass matrix to be proportional to a diagonal matrix of the form d...We study constraints on neutrino properties for a class of bi-large mixing See-Saw mass matrices with texture zeros and with the related Dirac neutrino mass matrix to be proportional to a diagonal matrix of the form diag (e, 1, 1). Texture zeros may occur in the light (class a)) or in the heavy (class b)) neutrino mass matrices. Each of these two classes has 5 different forms which can produce non-trivial three generation mixing with at least one texture zero. We tind that two types of texture zero mass matrices in both class a and class b can be consistent with present data on neutrino masses and mixing. None of the neutrinos can have zero masses and the lightest of the light neutrinos has a mass larger than about 0.046 eV for class a and 0.0027 eV for class b. In these models although the CK.M CP violating phase vanishes, the non-zero Majorana phases can exist and can play an important role in producing the observed baryon asymmetry in our universe through leptogenesis mechanism. The requirement of producing the observed baryon asymmetry can further distinguish different models and also restrict the See-Saw scale to be in the range of 10^12- 10^15 GeV. We also discuss RG effects on V^13.展开更多
In a novel parametrization of neutrino mixing and in the approximation of τ-lepton dominance, we show that the one-loop renormalization-group equations (RGEs) of Dirac neutrinos are different from those of Majorana...In a novel parametrization of neutrino mixing and in the approximation of τ-lepton dominance, we show that the one-loop renormalization-group equations (RGEs) of Dirac neutrinos are different from those of Majorana neutrinos even if two Majorana CP-violating phases vanish. As the latter can keep vanishing from the electroweak scale to the typical seesaw scale, it makes sense to distinguish between the RGE running effects of neutrino mixing parameters in Dirac and Majorana cases. The differences are found to be quite large in the minimal supersymmetric standard model with sizable tan β, provided the masses of three neutrinos are nearly degenerate or have an inverted hierarchy.展开更多
It is the current belief of the Physics Community that neutrinos are bereft of Charge because of Conservation of Charge in decay processes such as Beta Decay and are point particles with no physical size or shape. It ...It is the current belief of the Physics Community that neutrinos are bereft of Charge because of Conservation of Charge in decay processes such as Beta Decay and are point particles with no physical size or shape. It is the purpose of this paper to calculate the charges and the size of the electron neutrino, the muon neutrino, and the tau neutrino based on data available of their rest masses using the charges and rest masses of the electron, muon, and tau leptons from the Standard Model of Particle Physics Table. We base our calculations on the premise that Energy can create both Mass and Charge. Charge by itself is not conserved in any process that produces neutrinos. Only Total Energy is conserved.展开更多
In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature...In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature is around 29 K. Large Grains are in fact Bose-Einstein condensates of proposed dineutrinos, and are responsible for the cosmic Far-Infrared Background (FIRB) radiation. The distribution of the energy density of all components of the World (protons, electrons, photons, neutrinos, and dark matter particles) is considered. We present an overview of the World- Universe Model (WUM) and pay particular attention to the self-consistent set of time-varying values of basic parameters of the World: the age and critical energy density;Newtonian parameter of gravitation and Hubble’s parameter;temperatures of the cosmic Microwave Background radiation and the peak of the cosmic FIRB radiation;Fermi coupling parameter and coupling parameters of the proposed Super-Weak and Extremely-Weak interactions. Additionally, WUM forecasts the masses of dark matter particles, axions, and neutrinos;proposes two fundamental parameters of the World: fine-structure constant α and the quantity Q which is the dimensionless value of the fifth coordinate, and three fundamental physical units: basic unit of momentum, energy density, and energy flux density. WUM suggests that all time-dependent parameters of the World are inter- connected and in fact dependent on Q. We recommend adding the quantity Q to the list of the CODATA-recommended values.展开更多
This paper aims at solving several open questions in current neutrino physics: the neutrino mass hierarchy, the Dirac CP violating phase, the absolute mass of neutrinos, the nature of neutrinos (Dirac or Majorana), th...This paper aims at solving several open questions in current neutrino physics: the neutrino mass hierarchy, the Dirac CP violating phase, the absolute mass of neutrinos, the nature of neutrinos (Dirac or Majorana), the Majorana matrix and the absolute value of the effective Majorana neutrino mass. In the research presented in this paper, we have shown that the precise definition of the mass splittings between neutrino mass eigenstates, done in the latest analysis of experimental data, can be of crucial importance for defining the nature of neutrino mass hierarchy. The Standard Model has three generations of fundamental matter particles. Three generations of the charged lepton mass show a hierarchical structure: m<sub>τ</sub> > m<sub>μ</sub> > m<sub>e</sub>. Owing to that, there is a belief and it is considered that neutrinos may follow such hierarchical structure. In our calculations, we have also included the latest data obtained, based on the processing of measurement results, which showed that even with such data, obtained results favor the normal neutrino mass hierarchy. As for the individual neutrino mass calculated in this paper, in today’s neutrino physics it is only known that neutrino mass scale is bounded only from above, and both the Dirac and the Majorana character of neutrinos are compatible with all observations. Among some of the questions resolved in this paper, which are related to the properties of neutrinos, a positive answer was also given to the question of whether light neutrinos are self-conjugate particles or not.展开更多
In this paper,following the Occam’s razor principle,we have put forward a very simple form of the Dirac neutrino mass matrix M_(D) in the minimal seesaw model with the right-handed neutrino mass matrix being diagonal...In this paper,following the Occam’s razor principle,we have put forward a very simple form of the Dirac neutrino mass matrix M_(D) in the minimal seesaw model with the right-handed neutrino mass matrix being diagonal M_(R)=diag(M_(1),M_(2));it has one texture zero and only contains three real parameters,whose values can be determined from the neutrino oscillation experimental results.Such a model leads to a neutrino mass matrix M_(v)≃-M_(D)M_(R)^(-1)M_(D)^(T)that obeys the TM1 and μ-τ reflection symmetries simultaneously.In this way all the lepton flavor mixing parameters except for θ_(13) are predicted;the value of θ_(12) is predicted by the TM1 symmetry,while those of θ_(23),δ,ρ and σ by the μ-τ reflection symmetry.And the neutrino masses are predicted to be of the NO case with m_(1)=0,for which all three light neutrino masses will be pinned down with the help of the experimental results for the neutrino mass squared differences.For these results,the effective Majorana neutrino mass∣(M_(ν))_(ee)∣that controls the rate of the neutrinoless double beta decay is predicted to be 1.6 or 3.8 meV in the case of σ=0 or π/2.We have also studied the implications of the model for leptogenesis.It turns out that only in the two-flavor leptogenesis regime(which holds in the temperature range 10^(9)-10^(12) GeV)can leptogenesis have a chance to be successful.And a successful leptogenesis can be achieved at M_(1)≃1.2×10^(11) GeV in the case of σ=π/2,but not in the case of σ=0.展开更多
Considering the mass splittings of three active neutrinos,we investigate how the properties of dark energy affect the cosmological constraints on the total neutrino mass∑mv using the latest cosmological observations....Considering the mass splittings of three active neutrinos,we investigate how the properties of dark energy affect the cosmological constraints on the total neutrino mass∑mv using the latest cosmological observations.In this paper,several typical dark energy models,including ACDM,wCDM,CPL,and HDE models,are discussed.In the analysis,we also consider the effects from the neutrino mass hierarchies,i.e.the degenerate hierarchy(DH),the normal hierarchy(NH),and the inverted hierarchy(IH).We employ the current cosmological observations to do the analysis,including the Planck 2018 temperature and polarization power spectra,the baryon acoustic oscillations(BAO),the type Ia supernovae(SNe),and the Hubble constant H0 measurement.In the ACDM+∑mv model,we obtain the upper limits of the neutrino mass∑mv<0.123 eV(DH),∑mv<0.156 eV(NH),and∑mv<0.185 eV(IH)at the 95%C.L.,using the Planck+BAO+SNe data combination.For the wCDM+∑mv model and the CPL+∑mv model,larger upper limits of∑mv are obtained compared to those of the ACDM+∑mv model.The most stringent constraint on the neutrino mass,∑mv<0.080 eV(DH),is derived in the HDE+∑mv model.In addition,we find that the inclusion of the local measurement of the Hubble constant in the data combination leads to tighter constraints on the total neutrino mass in all these dark energy models.展开更多
In this work,we investigate the constraints on the total neutrino mass in the scenario of vacuum energy interacting with cold dark matter(abbreviated as IACDM)by using the latest cosmological observations.We consider ...In this work,we investigate the constraints on the total neutrino mass in the scenario of vacuum energy interacting with cold dark matter(abbreviated as IACDM)by using the latest cosmological observations.We consider four typical interaction forms,i.e.Q=βHρde,Q=βHρc,Q=βH0ρde,and Q=βH0ρc,in the IACDM scenario.To avoid the large-scale instability problem in interacting dark energy models,we employ the extended parameterized post-Friedmann method for interacting dark energy to calculate the perturbation evolution of dark energy in these models.The observational data used in this work include the cosmic microwave background(CMB)measurements from the Planck 2018 data release,the baryon acoustic oscillation(BAO)data,the type Ia supernovae(SN)observation(Pantheon compilation),and the 2019 local distance ladder measurement of the Hubble constant H0 from the Hubble Space Telescope.We find that,compared with those in the ACDM+∑mv model,the constrains on∑mv are looser in the four IACDM+∑mv models.When considering the three mass hierarchies of neutrinos,the constraints on∑mv are tightest in the degenerate hierarchy case and loosest in the inverted hierarchy case.In addition,in the four IACDM+∑mv models,the values of coupling parameterβare larger using the CMB+BAO+SN+H0 data combination than that using the CMB+BAO+SN data combination,andβ>0 is favored at more than 1σlevel when using CMB+BAO+SN+H0 data combination.The issue of the H0 tension is also discussed in this paper.We find that,compared with the ACDM+∑mv model,the H0 tension can be alleviated in the IACDM+∑mv model to some extent.展开更多
In this letter,we make an attempt to embed theμ–τreflection symmetry(which predicts maximal atmospherical mixing angle and Dirac CP phase)in the Friedberg-Lee neutrino model(which employs a translational flavor sym...In this letter,we make an attempt to embed theμ–τreflection symmetry(which predicts maximal atmospherical mixing angle and Dirac CP phase)in the Friedberg-Lee neutrino model(which employs a translational flavor symmetry and keeps one neutrino mass vanishing)and study the consequences of such a combination.展开更多
Generation of neutrino mass in SO(4) model is proposed here. The algebraic structure of SO (4) is same as to that ofSU(2)L x SU(2)R. It is shown that the spontaneous symmetry breaking results three massive as ...Generation of neutrino mass in SO(4) model is proposed here. The algebraic structure of SO (4) is same as to that ofSU(2)L x SU(2)R. It is shown that the spontaneous symmetry breaking results three massive as well as three massless gauge bosons. The standard model theory according to which there exist three massive gauge bosons and a massless one is emerged from this model. In the framework ofSU(2)L x SU(2)R a small Dirac neutrino mass is derived. It is also shown that such mass term may vanish with a special choice. The Majorana mass term is not considered here and thus in this model the neutrino mass does not follow seesaw structure.展开更多
We show how the traditional grid based method for finding neutrino oscillation parameters △m2 and tan2θ can be combined with an optimization technique, Differential Evolution (DE), to get a significant decrease in...We show how the traditional grid based method for finding neutrino oscillation parameters △m2 and tan2θ can be combined with an optimization technique, Differential Evolution (DE), to get a significant decrease in computer processing time required to obtain minimal chi-square (χ2) in four different regions of the parameter space. We demonstrate efficiency for the two-neutrinos case. For this, the χ2 function for neutrino oscillations is evaluated for grids with different density of points in standard allowed regions of the parameter space of △m2 and tan2θ using experimental and theoretical total event rates of ehlorine (Homestake), Gallex+GNO, SAGE, Superkamiokande, and SNO detectors. We find that using DE in combination with the grid based method with smail density of points can produce the results comparable with the one obtained using high density grid, in much lesser computation time.展开更多
In Asaka et al(2021 Phys.Rev.D 103,015014),Asaka,Ishida and Tanaka put forward an interesting possibility that the neutrinoless double beta decay can be hidden in the minimal seesaw model with the two right-handed neu...In Asaka et al(2021 Phys.Rev.D 103,015014),Asaka,Ishida and Tanaka put forward an interesting possibility that the neutrinoless double beta decay can be hidden in the minimal seesaw model with the two right-handed neutrinos having a hierarchical mass structure:the lighter one is lighter enough than the typical Fermi-momentum scale of nuclei while the heavier one is sufficiently heavy to decouple from the neutrinoless double beta decay.Then,in the basis where the mass matrices of the charged leptons and right-handed neutrinos are diagonal,for some particular texture of the Dirac neutrino mass matrix M_(D),the neutrinoless double beta decay can be hidden.In this paper,on top of this specified model,we study the interesting scenario that M_(D)further obeys the TM1 symmetry orμ-τreflection symmetry which are well motivated by the experimental results for the neutrino mixing parameters.展开更多
We analyze the existing solar neutrino experiment data and show the allowed regions. The result from SNO's salt phase itself restricts quite a lot the allowed region's area. Reactor neutrinos play an important...We analyze the existing solar neutrino experiment data and show the allowed regions. The result from SNO's salt phase itself restricts quite a lot the allowed region's area. Reactor neutrinos play an important role in determining oscillation parameters. KamLAND gives decisive conclusion on the solution to the solar neutrino puzzle, in particular, the spectral distortion in the 766.3 Ty KamLAND data gives another new improvement in the constraint of solar MSW-LMA solutions. We confirm that at 99. 73% C.L. the high-LMA solution is excluded.展开更多
Study of neutrino properties is nowadays one of the most active domains of research in physics. On the one hand, fundamental properties of the neutrinos like their absolute mass, their character (are they Dirac or Maj...Study of neutrino properties is nowadays one of the most active domains of research in physics. On the one hand, fundamental properties of the neutrinos like their absolute mass, their character (are they Dirac or Majorana particles?) and the number of neutrino flavors, are still unknown. On the other hand, the knowledge of these properties are of great importance since the neutrinos are very abundant in nature and play a key role in nuclear and particle physics, astrophysics and cosmology. In addition, the results of the neutrino oscillation experiments have convincingly showed that neutrinos have mass and mix, in contradiction to the initial assumptions of the Standard Model. In this context there is an increased interest in the study of the Lepton Number Violating (LNV) processes, since they are capable to decide on the above mentioned neutrino properties. Since recently, the neutrinoless double beta (0nββ) decay was considered the only process able to distinguish between Dirac or Majorana neutrinos and to give a hint on the absolute mass of the electron neutrino. At present, the increased luminosity of the LHC experiments at CERN makes it feasable the search for LNV processes at LHC as well. Besides the neutrino character, these studies can also shed light on the existence of other types of neutrinos (the sterile neutrinos), than the three known ones. In this paper, I make a brief review on our present knowledge about the neutrino properties and on the way they can be probed by LNV processes at low- and high-energies. Particularly, I refer to the 0nββ decay process and to the first attempts of searching of LNV processes in hadron collider experiments, particularly in LHC experiments at CERN-Geneva.展开更多
Solar, atmospheric and reactor neutrino experiments established that neutrinos are massive. It is quite natural then to consider neutrinos as candidate particles for explaining the dark matter in halos around galaxies...Solar, atmospheric and reactor neutrino experiments established that neutrinos are massive. It is quite natural then to consider neutrinos as candidate particles for explaining the dark matter in halos around galaxies. We study the gravitational clustering of these neutrinos within a model of a massive core and a surrounding spherical neutrino halo. The neutrinos form a degenerate Fermi gas and a loaded polytropic equation is established. We solve the equation and we obtain the neutrino density in a galaxy, the size of the galaxy and the galactic rotational curves. The available data favor a neutrino with a mass around 10 eV. The consequent cosmological implications are examined.展开更多
In this article an idea is presented, which allows for the explanation of superluminal muon neutrinos. It is based on the introduction of a new superluminal, massless gauge boson coupling to the neutrino only, but not...In this article an idea is presented, which allows for the explanation of superluminal muon neutrinos. It is based on the introduction of a new superluminal, massless gauge boson coupling to the neutrino only, but not to other standard model particles. The model is discussed with regard to the Supernova 1987 (SN 1987) velocity bound on electron antineutrinos and the Cohen-Glashow constraint on superluminal neutrino propagation. The latter can be circumvented if— within the framework of the model—a sterile neutrino mixing with the active neutrino mass eigenstates is introduced. The suggestion of a sterile neutrino accounting for superluminal neutrinos has already been proposed in several papers. It is possible to choose mixing angles with the sterile neutrino sector such that the model respects both the SN 1987 bound and the muon neutrino travels superluminally.展开更多
文摘We conjecture the existence of massless neutrinos that are in the line of Standard Model (unable to account for the neutrino mass) but have characteristics that are not accounted for the Standard Model: they use a shorter radial path than the photon and possess bosonic flavors, considered like bosons instead of fermions. We call this theory “neutrino temporal oscillation”. Faced with some experimental comparisons solar neutrinos, neutrinos from SN 1987A, cosmological neutrinos, the theory gives better results, explanations and sense than the complicated theory of neutrino oscillations (transformism). The deficit of detection of solar neutrinos would have been blindly attributed to the “neutrino oscillation” by physicists who quickly concluded that the neutrino and the photon follow the same transverse path. The “OPERA” experiment which measured the speed of neutrinos in 2011 resulted, after a “superluminal” saga, in neutrino speeds consistent with the speed of light, in data that the three existing types of neutrinos cannot explain, with the final outcome of a fourth “sterile” neutrino with non-standard interaction. OPERA findings aren’t just in conflict with existing theory, but other measurements as well. For example, a study from the Kamiokande II experiment in Japan of the supernova SN1987A found that light and neutrinos that departed this exploded star arrived at Earth within hours of each other. Even though measurements of the neutrinos emitted by this supernova strongly suggest that their speeds differ from light by less than one part in a billion, the fact remains that two types of data were collected, and that only one was retained to be consistent with the existing theory. Thus, the OPERA observation is in conflicts with the result of SN1987A, which itself is highly doubtful. And what about the neutrinos and antineutrinos born during the big bang, except that they were never detected and there is nothing to indicate that their speed could be other than that of light. Neutrino physics seems sick, belief is transformed into evidence. The theory of “Neutrino temporal oscillation” shows hint that massless neutrinos can take a shortcut through the three spatial dimensions of the space-time that we know. It represents within the Standard Model an open window on a “new physics” that has a connection with physical reality.
基金supported by the China Postdoctoral Science Foundation(No.2024M753715)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Nos.24qnpy125 and 22lglj11)Guangdong Basic and Applied Basic Research Foundation(No.2023B1515120030).
文摘The precise measurement of the antineutrino spectra produced by isotope fission in reactors is of great significance for studying neutrino oscillations,refining nuclear databases,and addressing the reactor antineutrino anomaly.In this paper,we report a method that utilizes a feedforward neural network(FNN)model to decompose the prompt energy spectrum observed in a short-baseline reactor neutrino experiment and extract the antineutrino spectra produced by the fission of major isotopes such as^(235)U,^(238)U,^(239)Pu,and^(241)Pu in the nuclear reactor.We present two training strategies for the model and compare them with the traditional X^(2) minimization method by applying them to the same set of pseudo-data corresponding to a total exposure of(2.9×5×1800)GW_(th)·tons·days.The results show that the FNN model not only converges faster and better during the fitting process but also achieves relative errors of less than 1%in the 2−8 MeV range in the extracted spectra,outperforming the X^(2) minimization method.The feasibility and superiority of this method were validated in the study.
基金supported by the National Natural Science Foundation of China under Grant Nos.12305069,11947022,12473001,11975072,11875102,and 11835009the National SKA Program of China under Grants Nos.2022SKA0110200 and 2022SKA0110203+1 种基金the Program of the Education Department of Liaoning Province under Grant No.JYTMS20231695the National 111 Project under Grant No.B16009。
文摘Sterile neutrinos can influence the evolution of the Universe,and thus cosmological observations can be used to detect them.Future gravitational-wave(GW)observations can precisely measure absolute cosmological distances,helping to break parameter degeneracies generated by traditional cosmological observations.This advancement can lead to much tighter constraints on sterile neutrino parameters.This work provides a preliminary forecast for detecting sterile neutrinos using third-generation GW detectors in combination with future shortγ-ray burst observations from a THESEUS-like telescope,an approach not previously explored in the literature.Both massless and massive sterile neutrinos are considered within theΛCDM cosmology.We find that using GW data can greatly enhance the detection capability for massless sterile neutrinos,reaching 3σlevel.For massive sterile neutrinos,GW data can also greatly assist in improving the parameter constraints,but it seems that effective detection is still not feasible.
基金supported by the SERB-Core Research Grant(Project RD/0122-SERB000-044)。
文摘The presence of background classical sources affects quantum field theory significantly in different ways.Neutrino oscillation is a phenomenon that confirms that neutrinos are massive fermions in nature,a celebrated result in modern physics.Neutrino oscillation plays an important role in many astrophysical observations.However,the interactions between the background classical sources with neutrinos are not often considered.In the present article,we show the effect of some classical sources,namely matter currents,electromagnetic waves,torsion,and gravitational waves on neutrino oscillation.It is shown explicitly that the above sources can change the helicity state of neutrinos during neutrino oscillation.
基金*The project partly supported by the Special Scientific Research Foundation for Ph. D. Program of Universities of China, National Natural Science Foundation of China
文摘We study constraints on neutrino properties for a class of bi-large mixing See-Saw mass matrices with texture zeros and with the related Dirac neutrino mass matrix to be proportional to a diagonal matrix of the form diag (e, 1, 1). Texture zeros may occur in the light (class a)) or in the heavy (class b)) neutrino mass matrices. Each of these two classes has 5 different forms which can produce non-trivial three generation mixing with at least one texture zero. We tind that two types of texture zero mass matrices in both class a and class b can be consistent with present data on neutrino masses and mixing. None of the neutrinos can have zero masses and the lightest of the light neutrinos has a mass larger than about 0.046 eV for class a and 0.0027 eV for class b. In these models although the CK.M CP violating phase vanishes, the non-zero Majorana phases can exist and can play an important role in producing the observed baryon asymmetry in our universe through leptogenesis mechanism. The requirement of producing the observed baryon asymmetry can further distinguish different models and also restrict the See-Saw scale to be in the range of 10^12- 10^15 GeV. We also discuss RG effects on V^13.
基金The project supported in part by National Natural Science Foundation of China
文摘In a novel parametrization of neutrino mixing and in the approximation of τ-lepton dominance, we show that the one-loop renormalization-group equations (RGEs) of Dirac neutrinos are different from those of Majorana neutrinos even if two Majorana CP-violating phases vanish. As the latter can keep vanishing from the electroweak scale to the typical seesaw scale, it makes sense to distinguish between the RGE running effects of neutrino mixing parameters in Dirac and Majorana cases. The differences are found to be quite large in the minimal supersymmetric standard model with sizable tan β, provided the masses of three neutrinos are nearly degenerate or have an inverted hierarchy.
文摘It is the current belief of the Physics Community that neutrinos are bereft of Charge because of Conservation of Charge in decay processes such as Beta Decay and are point particles with no physical size or shape. It is the purpose of this paper to calculate the charges and the size of the electron neutrino, the muon neutrino, and the tau neutrino based on data available of their rest masses using the charges and rest masses of the electron, muon, and tau leptons from the Standard Model of Particle Physics Table. We base our calculations on the premise that Energy can create both Mass and Charge. Charge by itself is not conserved in any process that produces neutrinos. Only Total Energy is conserved.
文摘In this manuscript we discuss mass-varying neutrinos and propose their energy density to exceed that of baryonic and dark matter. We introduce cosmic Large Grains whose mass is about Planck mass, and their temperature is around 29 K. Large Grains are in fact Bose-Einstein condensates of proposed dineutrinos, and are responsible for the cosmic Far-Infrared Background (FIRB) radiation. The distribution of the energy density of all components of the World (protons, electrons, photons, neutrinos, and dark matter particles) is considered. We present an overview of the World- Universe Model (WUM) and pay particular attention to the self-consistent set of time-varying values of basic parameters of the World: the age and critical energy density;Newtonian parameter of gravitation and Hubble’s parameter;temperatures of the cosmic Microwave Background radiation and the peak of the cosmic FIRB radiation;Fermi coupling parameter and coupling parameters of the proposed Super-Weak and Extremely-Weak interactions. Additionally, WUM forecasts the masses of dark matter particles, axions, and neutrinos;proposes two fundamental parameters of the World: fine-structure constant α and the quantity Q which is the dimensionless value of the fifth coordinate, and three fundamental physical units: basic unit of momentum, energy density, and energy flux density. WUM suggests that all time-dependent parameters of the World are inter- connected and in fact dependent on Q. We recommend adding the quantity Q to the list of the CODATA-recommended values.
文摘This paper aims at solving several open questions in current neutrino physics: the neutrino mass hierarchy, the Dirac CP violating phase, the absolute mass of neutrinos, the nature of neutrinos (Dirac or Majorana), the Majorana matrix and the absolute value of the effective Majorana neutrino mass. In the research presented in this paper, we have shown that the precise definition of the mass splittings between neutrino mass eigenstates, done in the latest analysis of experimental data, can be of crucial importance for defining the nature of neutrino mass hierarchy. The Standard Model has three generations of fundamental matter particles. Three generations of the charged lepton mass show a hierarchical structure: m<sub>τ</sub> > m<sub>μ</sub> > m<sub>e</sub>. Owing to that, there is a belief and it is considered that neutrinos may follow such hierarchical structure. In our calculations, we have also included the latest data obtained, based on the processing of measurement results, which showed that even with such data, obtained results favor the normal neutrino mass hierarchy. As for the individual neutrino mass calculated in this paper, in today’s neutrino physics it is only known that neutrino mass scale is bounded only from above, and both the Dirac and the Majorana character of neutrinos are compatible with all observations. Among some of the questions resolved in this paper, which are related to the properties of neutrinos, a positive answer was also given to the question of whether light neutrinos are self-conjugate particles or not.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.11605081,12142507 and 12147214the Natural Science Foundation of the Liaoning Scientific Committee under Grant No.2022MS-314
文摘In this paper,following the Occam’s razor principle,we have put forward a very simple form of the Dirac neutrino mass matrix M_(D) in the minimal seesaw model with the right-handed neutrino mass matrix being diagonal M_(R)=diag(M_(1),M_(2));it has one texture zero and only contains three real parameters,whose values can be determined from the neutrino oscillation experimental results.Such a model leads to a neutrino mass matrix M_(v)≃-M_(D)M_(R)^(-1)M_(D)^(T)that obeys the TM1 and μ-τ reflection symmetries simultaneously.In this way all the lepton flavor mixing parameters except for θ_(13) are predicted;the value of θ_(12) is predicted by the TM1 symmetry,while those of θ_(23),δ,ρ and σ by the μ-τ reflection symmetry.And the neutrino masses are predicted to be of the NO case with m_(1)=0,for which all three light neutrino masses will be pinned down with the help of the experimental results for the neutrino mass squared differences.For these results,the effective Majorana neutrino mass∣(M_(ν))_(ee)∣that controls the rate of the neutrinoless double beta decay is predicted to be 1.6 or 3.8 meV in the case of σ=0 or π/2.We have also studied the implications of the model for leptogenesis.It turns out that only in the two-flavor leptogenesis regime(which holds in the temperature range 10^(9)-10^(12) GeV)can leptogenesis have a chance to be successful.And a successful leptogenesis can be achieved at M_(1)≃1.2×10^(11) GeV in the case of σ=π/2,but not in the case of σ=0.
基金supported by the National Natural Science Foundation of China(Grant Nos.11975072,11875102,11835009,and 11690021)the Liaoning Revitalization Talents Program(Grant No.XLYC1905011)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.N2005030)the Top-Notch Young Talents Program of China(Grant No.W02070050)。
文摘Considering the mass splittings of three active neutrinos,we investigate how the properties of dark energy affect the cosmological constraints on the total neutrino mass∑mv using the latest cosmological observations.In this paper,several typical dark energy models,including ACDM,wCDM,CPL,and HDE models,are discussed.In the analysis,we also consider the effects from the neutrino mass hierarchies,i.e.the degenerate hierarchy(DH),the normal hierarchy(NH),and the inverted hierarchy(IH).We employ the current cosmological observations to do the analysis,including the Planck 2018 temperature and polarization power spectra,the baryon acoustic oscillations(BAO),the type Ia supernovae(SNe),and the Hubble constant H0 measurement.In the ACDM+∑mv model,we obtain the upper limits of the neutrino mass∑mv<0.123 eV(DH),∑mv<0.156 eV(NH),and∑mv<0.185 eV(IH)at the 95%C.L.,using the Planck+BAO+SNe data combination.For the wCDM+∑mv model and the CPL+∑mv model,larger upper limits of∑mv are obtained compared to those of the ACDM+∑mv model.The most stringent constraint on the neutrino mass,∑mv<0.080 eV(DH),is derived in the HDE+∑mv model.In addition,we find that the inclusion of the local measurement of the Hubble constant in the data combination leads to tighter constraints on the total neutrino mass in all these dark energy models.
基金supported by the National Natural Science Foundation of China(Grant Nos.11975072,11875102,11835009,and 11690021)the Liaoning Revitalization Talents Program(Grant No.XLYC1905011)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.N2005030)the Top-Notch Young Talents Program of China(W02070050)。
文摘In this work,we investigate the constraints on the total neutrino mass in the scenario of vacuum energy interacting with cold dark matter(abbreviated as IACDM)by using the latest cosmological observations.We consider four typical interaction forms,i.e.Q=βHρde,Q=βHρc,Q=βH0ρde,and Q=βH0ρc,in the IACDM scenario.To avoid the large-scale instability problem in interacting dark energy models,we employ the extended parameterized post-Friedmann method for interacting dark energy to calculate the perturbation evolution of dark energy in these models.The observational data used in this work include the cosmic microwave background(CMB)measurements from the Planck 2018 data release,the baryon acoustic oscillation(BAO)data,the type Ia supernovae(SN)observation(Pantheon compilation),and the 2019 local distance ladder measurement of the Hubble constant H0 from the Hubble Space Telescope.We find that,compared with those in the ACDM+∑mv model,the constrains on∑mv are looser in the four IACDM+∑mv models.When considering the three mass hierarchies of neutrinos,the constraints on∑mv are tightest in the degenerate hierarchy case and loosest in the inverted hierarchy case.In addition,in the four IACDM+∑mv models,the values of coupling parameterβare larger using the CMB+BAO+SN+H0 data combination than that using the CMB+BAO+SN data combination,andβ>0 is favored at more than 1σlevel when using CMB+BAO+SN+H0 data combination.The issue of the H0 tension is also discussed in this paper.We find that,compared with the ACDM+∑mv model,the H0 tension can be alleviated in the IACDM+∑mv model to some extent.
基金supported in part by the National Natural Science Foundation of China under grant Nos.11605081,12142507 and 12147214the Natural Science Foundation of Liaoning Province under grant NO.2019-ZD-0473。
文摘In this letter,we make an attempt to embed theμ–τreflection symmetry(which predicts maximal atmospherical mixing angle and Dirac CP phase)in the Friedberg-Lee neutrino model(which employs a translational flavor symmetry and keeps one neutrino mass vanishing)and study the consequences of such a combination.
文摘Generation of neutrino mass in SO(4) model is proposed here. The algebraic structure of SO (4) is same as to that ofSU(2)L x SU(2)R. It is shown that the spontaneous symmetry breaking results three massive as well as three massless gauge bosons. The standard model theory according to which there exist three massive gauge bosons and a massless one is emerged from this model. In the framework ofSU(2)L x SU(2)R a small Dirac neutrino mass is derived. It is also shown that such mass term may vanish with a special choice. The Majorana mass term is not considered here and thus in this model the neutrino mass does not follow seesaw structure.
基金the Higher Education Commission(HEC) of Pakistan for its financial support through Grant No.17-5-2(Ps2-044) HEC/Sch/2004
文摘We show how the traditional grid based method for finding neutrino oscillation parameters △m2 and tan2θ can be combined with an optimization technique, Differential Evolution (DE), to get a significant decrease in computer processing time required to obtain minimal chi-square (χ2) in four different regions of the parameter space. We demonstrate efficiency for the two-neutrinos case. For this, the χ2 function for neutrino oscillations is evaluated for grids with different density of points in standard allowed regions of the parameter space of △m2 and tan2θ using experimental and theoretical total event rates of ehlorine (Homestake), Gallex+GNO, SAGE, Superkamiokande, and SNO detectors. We find that using DE in combination with the grid based method with smail density of points can produce the results comparable with the one obtained using high density grid, in much lesser computation time.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.11605081,12142507 and 12147214the Natural Science Foundation of the Liaoning Scientific Committee under grant NO.2022-MS-314。
文摘In Asaka et al(2021 Phys.Rev.D 103,015014),Asaka,Ishida and Tanaka put forward an interesting possibility that the neutrinoless double beta decay can be hidden in the minimal seesaw model with the two right-handed neutrinos having a hierarchical mass structure:the lighter one is lighter enough than the typical Fermi-momentum scale of nuclei while the heavier one is sufficiently heavy to decouple from the neutrinoless double beta decay.Then,in the basis where the mass matrices of the charged leptons and right-handed neutrinos are diagonal,for some particular texture of the Dirac neutrino mass matrix M_(D),the neutrinoless double beta decay can be hidden.In this paper,on top of this specified model,we study the interesting scenario that M_(D)further obeys the TM1 symmetry orμ-τreflection symmetry which are well motivated by the experimental results for the neutrino mixing parameters.
文摘We analyze the existing solar neutrino experiment data and show the allowed regions. The result from SNO's salt phase itself restricts quite a lot the allowed region's area. Reactor neutrinos play an important role in determining oscillation parameters. KamLAND gives decisive conclusion on the solution to the solar neutrino puzzle, in particular, the spectral distortion in the 766.3 Ty KamLAND data gives another new improvement in the constraint of solar MSW-LMA solutions. We confirm that at 99. 73% C.L. the high-LMA solution is excluded.
文摘Study of neutrino properties is nowadays one of the most active domains of research in physics. On the one hand, fundamental properties of the neutrinos like their absolute mass, their character (are they Dirac or Majorana particles?) and the number of neutrino flavors, are still unknown. On the other hand, the knowledge of these properties are of great importance since the neutrinos are very abundant in nature and play a key role in nuclear and particle physics, astrophysics and cosmology. In addition, the results of the neutrino oscillation experiments have convincingly showed that neutrinos have mass and mix, in contradiction to the initial assumptions of the Standard Model. In this context there is an increased interest in the study of the Lepton Number Violating (LNV) processes, since they are capable to decide on the above mentioned neutrino properties. Since recently, the neutrinoless double beta (0nββ) decay was considered the only process able to distinguish between Dirac or Majorana neutrinos and to give a hint on the absolute mass of the electron neutrino. At present, the increased luminosity of the LHC experiments at CERN makes it feasable the search for LNV processes at LHC as well. Besides the neutrino character, these studies can also shed light on the existence of other types of neutrinos (the sterile neutrinos), than the three known ones. In this paper, I make a brief review on our present knowledge about the neutrino properties and on the way they can be probed by LNV processes at low- and high-energies. Particularly, I refer to the 0nββ decay process and to the first attempts of searching of LNV processes in hadron collider experiments, particularly in LHC experiments at CERN-Geneva.
文摘Solar, atmospheric and reactor neutrino experiments established that neutrinos are massive. It is quite natural then to consider neutrinos as candidate particles for explaining the dark matter in halos around galaxies. We study the gravitational clustering of these neutrinos within a model of a massive core and a surrounding spherical neutrino halo. The neutrinos form a degenerate Fermi gas and a loaded polytropic equation is established. We solve the equation and we obtain the neutrino density in a galaxy, the size of the galaxy and the galactic rotational curves. The available data favor a neutrino with a mass around 10 eV. The consequent cosmological implications are examined.
文摘In this article an idea is presented, which allows for the explanation of superluminal muon neutrinos. It is based on the introduction of a new superluminal, massless gauge boson coupling to the neutrino only, but not to other standard model particles. The model is discussed with regard to the Supernova 1987 (SN 1987) velocity bound on electron antineutrinos and the Cohen-Glashow constraint on superluminal neutrino propagation. The latter can be circumvented if— within the framework of the model—a sterile neutrino mixing with the active neutrino mass eigenstates is introduced. The suggestion of a sterile neutrino accounting for superluminal neutrinos has already been proposed in several papers. It is possible to choose mixing angles with the sterile neutrino sector such that the model respects both the SN 1987 bound and the muon neutrino travels superluminally.