Background:Qingyangshen(Cynanchum otophyllum C.K.Schneid)is a folk drug for treating depression and other mental disorders induced by social defeat stress.Neuroplasticity in the hippocampus is essential for the modula...Background:Qingyangshen(Cynanchum otophyllum C.K.Schneid)is a folk drug for treating depression and other mental disorders induced by social defeat stress.Neuroplasticity in the hippocampus is essential for the modulation of cognition and emotion,and its impairment may contribute to the development and progression of depression.Our previous studies have found that Qingyangshen glycosides(QYS)can improve depression-like behavior in social failure mouse models,mainly through PGC-1α/FNDC5/BDNF signaling pathways activation,but its effects and mechanisms on hippocampal neuroplasticity remain unknown.Methods:Chronic social defeat stress(CSDS)was used to induce social defeat in mice.Morphological changes in the hippocampus were observed by H&E staining and Golgi staining.Immunofluorescence double staining was used to detect the expression of synaptophysin(SYN)and postsynaptic density protein-95(PSD-95),while western blot was employed to evaluate PSD-95,SYN,and doublecortin(DCX)proteins.The pathological processing of social defeat and the therapeutic effects of QYS on it was confirmed through behavioral assessment associated with morpho-logic observation.Results:During the whole study,the sucrose preference indices and OFT activity time of CSDS mice were significantly decreased(p≤0.05),and the tail suspension immobil-ity time was significantly increased(p≤0.05),suggesting that the mice had significant depressive symptoms.Treatment with QYS(25,50,and 100 mg/kg)significantly al-leviated depressive symptoms in CSDS mice,which was demonstrated by significantly(p≤0.05 or p≤0.01)reducing the duration of tail-hanging immobility and increasing the tendency of sucrose preference indices and OFT activity time.QYS treatment also significantly increased the expression of DCX,PSD-95,and SYN proteins,which play a crucial role in depression.Conclusions:QYS alleviated these symptoms by enhancing hippocampal neuroplasti-city through upregulating the expression of synapse-associated proteins(SAPs).The therapeutic mechanism of QYS may involve modulating the neuroplasticity of hip-pocampus neurons by altering the expression of SAPs.展开更多
Gait disorders drastically affect the quality of life of stroke survivors,making post-stroke rehabilitation an important research focus.Noninvasive brain stimulation has potential in facilitating neuroplasticity and i...Gait disorders drastically affect the quality of life of stroke survivors,making post-stroke rehabilitation an important research focus.Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment.However,a large inter-individual variability in the response to noninvasive brain stimulation interventions has been increasingly recognized.We first review the neurophysiology of human gait and post-stroke neuroplasticity for gait recovery,and then discuss how noninvasive brain stimulation techniques could be utilized to enhance gait recovery.While post-stroke neuroplasticity for gait recovery is characterized by use-dependent plasticity,it evolves over time,is idiosyncratic,and may develop maladaptive elements.Furthermore,noninvasive brain stimulation has limited reach capability and is facilitative-only in nature.Therefore,we recommend that noninvasive brain stimulation be used adjunctively with rehabilitation training and other concurrent neuroplasticity facilitation techniques.Additionally,when noninvasive brain stimulation is applied for the rehabilitation of gait impairment in stroke survivors,stimulation montages should be customized according to the specific types of neuroplasticity found in each individual.This could be done using multiple mapping techniques.展开更多
Lactulose is known to improve cognitive function in patients with early hepatic encephalopa- thy; however, the underlying mechanism remains poorly understood. In the present study, we investigated the behavioral and n...Lactulose is known to improve cognitive function in patients with early hepatic encephalopa- thy; however, the underlying mechanism remains poorly understood. In the present study, we investigated the behavioral and neurochemical effects of lactulose in a rat model of early hepatic encephalopathy induced by carbon tetrachloride. Immunohistochemistry showed that lactulose treatment promoted neurogenesis and increased the number of neurons and astrocytes in the hippocampus. Moreover, lactulose-treated rats showed shorter escape latencies than model rats in the Morris water maze, indicating that lactulose improved the cognitive impairments caused by hepatic encephalopathy. The present findings suggest that lactulose effectively improves cog- nitive function by enhancing neuroplasticity in a rat model of early hepatic encephalopathy.展开更多
The pathophysiology of depression has been traditionally attributed to a chemical imbalance and critical interactions between genetic and environmental risk factors, and antidepressant drugs suggested to act predomina...The pathophysiology of depression has been traditionally attributed to a chemical imbalance and critical interactions between genetic and environmental risk factors, and antidepressant drugs suggested to act predominantly amplifying monoaminergic neurotransmission. This conceptualization may be currently considered reductive. The current literature about the pathophysiological mechanisms underlying depression, stress-related disorders and antidepressant treatment was examined. In order to provide a critical overview about neuroplasticity, depression and antidepressant drugs, a detailed Pubmed/Medline, Scopus, Psyc Lit, and Psyc Info search to identify all papers and book chapters during the period between 1980 and 2011 was performed. Pathological stress and depression determine relevant brain changes such as loss of dendritic spines and synapses, dendritic atrophy as well as reduction of glial cells(both in number and size) in specific areas such as the hippocampus and prefrontal cortex. An increased dendritic arborisation and synaptogenesis may instead be observed in the amygdala as a consequence of depression and stress-related disorders. While hippocampal and prefrontal functioning was impaired, amygdala functioning was abnormally amplified. Most of molecular abnormalities and biological changes of aberrant neuroplasticity may be explained by the action of glutamate. Antidepressant treatment is associated with neurogenesis, gliogenesis, dendritic arborisation, new synapse formation and cell survival both in the hippocampus and prefrontal cortex. Antidepressants(ADs) induce neuroplasticity mechanisms reversing the pathological effects of depression and stress-related disorders. The neuroplasticity hypothesis may explain the therapeutic and prophylactic action of ADs representing a new innovative approach to the pathophysiology of depression and stress-related disorders.展开更多
Dear editors,Neurodegenerative diseases are now associated with the global obesity and diabetes epidemic in the developing and developed world.Neurodegenerative diseases are a heterogeneous group of disorders with com...Dear editors,Neurodegenerative diseases are now associated with the global obesity and diabetes epidemic in the developing and developed world.Neurodegenerative diseases are a heterogeneous group of disorders with complex factors such as neurohumoral,endocrine and environmental factors involved in induction of these neurodegenerative diseases.The future of science and medicine in neurodegenerative diseases is now dependent on nutritional genomics with insulin resistance a major factor in the induction of neurodegenerative diseases.Nutritional genomics now involves the anti-aging gene Sirtuin 1(Sirt 1)that is important to the prevention of insulin resistance with its critical involvement in the immune system(Martins,2018a,b).Sirt 1 inactivation leads to toxic immune reactions connected to the acceleration of neuron death in various communities.Appetite control with relevance to immunometabolism has become of critical importance to the treatment of neurodegeneration(Figure 1).Nutritional diets activate the heat shock gene Sirt 1 to prevent the increase in heat shock proteins connected to autoimmune disease,mitophagy(Martins,2018a,b)and irreversible programmed cell death in global populations(Figure 1).展开更多
The brain is a dynamic organ of the biological renaissance due to the existence of neuroplasticity. Adult neurogenesis abides by every aspect of neuroplasticity in the intact brain and contributes to neural regenerati...The brain is a dynamic organ of the biological renaissance due to the existence of neuroplasticity. Adult neurogenesis abides by every aspect of neuroplasticity in the intact brain and contributes to neural regeneration in response to brain diseases and injury. The occurrence of adult neurogenesis has unequivocally been witnessed in human subjects, experimental and wildlife research including rodents, bats and cetaceans. Adult neurogenesis is a complex cellular process, in which generation of neuroblasts namely, neuroblastosis appears to be an integral process that occur in the limbic system and basal ganglia in addition to the canonical neurogenic niches. Neuroblastosis can be regulated by various factors and contributes to different functions of the brain. The characteristics and fate of neuroblasts have been found to be different among mammals regardless of their cognitive functions. Recently, regulation of neuroblastosis has been proposed for the sensorimotor interface and regenerative neuroplasticity of the adult brain. Hence, the understanding of adult neurogenesis at the functional level of neuroblasts requires a great scientific attention. Therefore, this mini-review provides a glimpse into the conceptual development of neuroplasticity, discusses the possible role of different types of neuroblasts and signifies neuroregenerative failure as a potential cause of dementia.展开更多
Amyotrophic lateral sclerosis is a relentlessly progressive multi-system condition.The clinical picture is dominated by upper and lower motor neuron degeneration,but extra-motor pathology is increasingly recognized,in...Amyotrophic lateral sclerosis is a relentlessly progressive multi-system condition.The clinical picture is dominated by upper and lower motor neuron degeneration,but extra-motor pathology is increasingly recognized,including cerebellar pathology.Post-mortem and neuroimaging studies primarily focus on the chara cterization of supratentorial disease,des pite emerging evidence of cerebellar degeneration in amyotrophic lateral sclerosis.Cardinal clinical features of amyotrophic lateral sclerosis,such as dysarthria,dysphagia,cognitive and behavioral deficits,saccade abnormalities,gait impairment,respiratory weakness and pseudobulbar affect are likely to be exacerbated by co-existing cerebellar pathology.This review summarizes in vivo and post mortem evidence for cerebellar degeneration in amyotrophic lateral scle rosis.Structural imaging studies consistently capture cerebellar grey matter volume reductions,diffusivity studies readily detect both intra-cerebellar and cerebellar peduncle white matter alte rations and functional imaging studies commonly report increased functional connectivity with supratentorial regions.Increased functional connectivity is commonly interpreted as evidence of neuro plasticity representing compensatory processes despite the lack of post-mortem validation.There is a scarcity of post-mortem studies focusing on cerebellar alte rations,but these detect pTDP-43 in cerebellar nuclei.Ce rebellar pathology is an overloo ked facet of neurodegeneration in amyotrophic lateral sclerosis despite its contribution to a multitude of clinical symptoms,wides p read connectivity to spinal and supratentorial regions and putative role in compensating for the degeneration of primary motor regions.展开更多
Depression is a common mental disorder and one of the leading causes of disability around the world.Monoaminergic antidepressants often take weeks to months to work and are not effective for all patients.This has led ...Depression is a common mental disorder and one of the leading causes of disability around the world.Monoaminergic antidepressants often take weeks to months to work and are not effective for all patients.This has led to a search for a better understanding of the pathogenesis of depression as well as to the development of novel antidepressants.One such novel antidepressant is ketamine,which has demonstrated both clinically promising results and contributed to new explanatory models of depression,including the potential role of neuroplasticity in depression.Early clinical trials are now showing promising results of serotonergic psychedelics for depression;however,their mechanism of action remains poorly understood.This paper seeks to review the effect of depression,classic antidepressants,ketamine,and serotonergic psychedelics on markers of neuroplasticity at a cellular,molecular,electrophysiological,functional,structural,and psychological level to explore the potential role that neuroplasticity plays in the treatment response of serotonergic psychedelics.展开更多
Blindness provides an unparalleled opportunity to study plasticity of the nervous system in humans.Seminal work in this area examined the often dramatic modifications to the visual cortex that result when visual input...Blindness provides an unparalleled opportunity to study plasticity of the nervous system in humans.Seminal work in this area examined the often dramatic modifications to the visual cortex that result when visual input is completely absent from birth or very early in life(Kupers and Ptito,2014).More recent studies explored what happens to the visual pathways in the context of acquired blindness.This is particularly relevant as the majority of diseases that cause vision loss occur in the elderly.展开更多
Exploratory studies developed at several neurosciences laboratories at universities around the world show us through the experience that there is a biological process called neuroplasticity. Because of this oldest con...Exploratory studies developed at several neurosciences laboratories at universities around the world show us through the experience that there is a biological process called neuroplasticity. Because of this oldest concept about the neuronal formation, scientists also thought that if a particular area of the adult brain was damaged, the nerve cells could not form new connections and the functions controlled by this field of the brain would be permanently lost or could not be regenerate. However, studies have overturned this old view, and currently, scientists recognize that the brain continues to reorganize itself by forming new neural connections during the life. This phenomenon is called neuroplasticity that refers to the potential which the brain should be reorganized by creating new neural pathways to adapt, as it needs.展开更多
Neuroplasticity is a condition that is present from birth, being found in the central and peripheral nervous system, in both physiological and pathological terms. Based on the findings, therapeutic and non-therapeutic...Neuroplasticity is a condition that is present from birth, being found in the central and peripheral nervous system, in both physiological and pathological terms. Based on the findings, therapeutic and non-therapeutic attempts were tested on spinal cord trauma to recover locomotor function below the level of the injury. The work defined and showed other forms of the term neuroplasticity, talk about some pathological and non-pathological conditions, and, finally, show neuroplasticity and some of its treatments in the spinal cord injury process. A narrative literature review from 2000 to 2020 of the PubMed platform was conducted and analysis of two books for the elaboration of this <span>work. Animal/human studies were included that addressed pathologies,</span> forms of treatment for spinal trauma, and qualis from B1 to A1. Pre-2000 articles, which addressed neuroplasticity only to understand the molecular mechanisms and articles that were not in English, were excluded. As a result, the main molecules and structures that inhibit neuroplasticity were found, and, based on their knowledge, forms of treatments were developed to inhibit these molecules and structures to assist in neuroplasticity and assist in possible functional recovery. It can be concluded that the physiological barriers are already being overcome by the most recent forms of treatment and that soon new studies may propose a form of treatment that is protocoled for all patients.展开更多
The rehabilitation of musculoskeletal dysfunctions(MSD)such as osteoarthritis,anterior cruciate ligament injuries and low back pain focuses on symptomatic management of pain followed by stretching and strengthening.Ho...The rehabilitation of musculoskeletal dysfunctions(MSD)such as osteoarthritis,anterior cruciate ligament injuries and low back pain focuses on symptomatic management of pain followed by stretching and strengthening.However,these interventions focus just on symptomatic pain management and addressing musculoskeletal impairments.But it has been found that neuroplastic changes continue to occur throughout these pathologies and sometimes even are persistent,as conventional rehabilitation doesn’t focus on these changes therefore chances of reinjury increase.Therefore this article discusses underlying neuroplastic changes associated with MSD and neuroplasticity-based interventions for better clinical outcomes.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo...The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.展开更多
Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modula...Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modulatory effect on neural plasticity associated with MSL remains unclarified.This study was therefore designed to compare the role of the left primary motor cortex and the left supplementary motor area proper(SMAp)in modulating MSL across different complexity levels and for both hands,as well as the associated neuroplasticity by applying intermittent theta burst stimulation together with the electroencephalogram and concurrent transcranial magnetic stimulation.Our data demonstrated the role of SMAp stimulation in modulating neural communication to support MSL,which is achieved by facilitating regional activation and orchestrating neural coupling across distributed brain regions,particularly in interhemispheric connections.These findings may have important clinical implications,particularly for motor rehabilitation in populations such as post-stroke patients.展开更多
Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery...Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.展开更多
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a...The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.展开更多
BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking rec...BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking recovery.OBJECTIVE:To determine whether early suspension-protected training with a personal assistant machine for stroke patients enhances walking ability and prevents muscle spasms.METHODS:Thirty-two early-stage stroke patients from Shenzhen University General Hospital and the China Rehabilitation Research Center were randomly assigned to the experimental group(n=16)and the control group(n=16).Both groups underwent 4 weeks of gait training under the suspension protection system for 30 minutes daily,5 days a week.The experimental group used the personal assistant machine during training.Three-dimensional gait analysis(using the Cortex motion capture system),Brunnstrom staging,Fugl-Meyer Assessment for lower limb motor function,Fugl-Meyer balance function,and the modified Ashworth Scale were evaluated within 1 week before the intervention and after 4 weeks of intervention.RESULTS AND CONCLUSION:After the 4-week intervention,all outcome measures showed significant changes in each group.The experimental group had a small but significant increase in the modified Ashworth Scale score(P<0.05,d=|0.15|),while the control group had a large significant increase(P<0.05,d=|1.48|).The experimental group demonstrated greater improvements in walking speed(16.5 to 38.44 cm/s,P<0.05,d=|4.01|),step frequency(46.44 to 64.94 steps/min,P<0.05,d=|2.32|),stride length(15.50 to 29.81 cm,P<0.05,d=|3.44|),and peak hip and knee flexion(d=|1.82|to|2.17|).After treatment,the experimental group showed significantly greater improvements than the control group in walking speed(38.44 vs.26.63 cm/s,P<0.05,d=|2.75|),stride length,peak hip and knee flexion(d=|1.31|to|1.45|),step frequency(64.94 vs.59.38 steps/min,P<0.05,d=|0.85|),and a reduced support phase(bilateral:24.31%vs.28.38%,P<0.05,d=|0.88|;non-paretic:66.19%vs.70.13%,P<0.05,d=|0.94|).For early hemiplegia,personal assistant machine-assisted gait training under the suspension protection system helps establish a correct gait pattern,prevents muscle spasms,and improves motor function.展开更多
The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage.The latter involves gl...The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage.The latter involves global alterations,making understanding plastic responses triggered by local damage difficult.One key feature of the dentate gyrus is that it contains a well-defined neurogenic niche,the subgranular zone,and beyond neurogenesis,newly born granule cells may maintain a“young”phenotype throughout life,adding to the plastic nature of the structure.Here,we present a novel experimental model of local brain damage in organotypic entorhino-hippocampal cultures that results in the activation of adjacent newly born granule cells.A small piece of filter paper was placed on the surface of the granule cell layer of the dentate gyrus,which evoked a foreign body reaction of astrocytes,along with the activation of local young neurons expressing doublecortin.Forty-eight hours after foreign body placement,the number of doublecortin-immunoreactive cells increased in the subgranular zone in the direct vicinity of the foreign body,whereas overall increased doublecortin immunoreactivity was observed in the granule cell layer and molecular layer of the dentate gyrus.Foreign body placement in the pyramidal layer of the CA1 region evoked a comparable local astroglial reaction but did not lead to an increase in doublecortin-immunoreactive in either the CA1 region or the adjacent dentate gyrus.Seven days after foreign body placement in the dentate gyrus,the increase in doublecortin-immunoreactivity was no longer observed,indicating the transient activation of young cells.However,7 days after foreign body placement,the number of doublecortin-immunoreactive granule cells coimmunoreactive for calbindin was lower than that under the control conditions.As calbindin is a marker for mature granule cells,this result suggests that activated young cells remain at a more immature stage following foreign body placement.Live imaging of retrovirally green fluorescent protein-labeled newly born granule cells revealed the orientation and growth of their dendrites toward the foreign body placement.This novel experimental model of foreign body placement in organotypic entorhino-hippocampal cultures could serve as a valuable tool for studying both glial reactivity and neuronal plasticity,specifically of newly born neurons under controlled in vitro conditions.展开更多
Stroke remains a leading cause of long-term disability worldwide.There is an unmet need for neuromodulatory therapies that can mitigate against neurovascular injury and potentially promote neurological recovery.Transc...Stroke remains a leading cause of long-term disability worldwide.There is an unmet need for neuromodulatory therapies that can mitigate against neurovascular injury and potentially promote neurological recovery.Transcutaneous vagus nerve stimulation has been demonstrated to show potential therapeutic effects in both acute and chronic stroke.However,previously published research has only investigated a narrow range of stimulation settings and indications.In this review,we detail the ongoing studies of transcutaneous vagus nerve stimulation in stroke through systematic searches of registered clinical trials.We summarize the upcoming clinical trials of transcutaneous vagus nerve stimulation in stroke,highlighting their indications,parameter settings,scope,and limitations.We further explore the challenges and barriers associated with the implementation of transcutaneous vagus nerve stimulation in acute stroke and stroke rehabilitation,focusing on critical aspects such as stimulation settings,target groups,biomarkers,and integration with rehabilitation interventions.展开更多
基金Guizhou Administration of TCM,Traditional Chinese medicine,Ethnic Medicine Science and Technology Research Special Project,Grant/Award Number:QZYY-2022-008Subsidy Fund for Scientific Research and Innovation Exploration Project,National Natural Science Foundation of China of Guizhou University of Traditional Chinese Medicine,Grant/Award Number:2018YFC170810502+1 种基金Science and Technology Fund Project of Guizhou Provincial Health Commission,Grant/Award Number:gzwkj2023-147Development of animal models for drug discovery-brain diseases.National Research and Development Project of China,MOST,Grant/Award Number:2023YFF0724802.
文摘Background:Qingyangshen(Cynanchum otophyllum C.K.Schneid)is a folk drug for treating depression and other mental disorders induced by social defeat stress.Neuroplasticity in the hippocampus is essential for the modulation of cognition and emotion,and its impairment may contribute to the development and progression of depression.Our previous studies have found that Qingyangshen glycosides(QYS)can improve depression-like behavior in social failure mouse models,mainly through PGC-1α/FNDC5/BDNF signaling pathways activation,but its effects and mechanisms on hippocampal neuroplasticity remain unknown.Methods:Chronic social defeat stress(CSDS)was used to induce social defeat in mice.Morphological changes in the hippocampus were observed by H&E staining and Golgi staining.Immunofluorescence double staining was used to detect the expression of synaptophysin(SYN)and postsynaptic density protein-95(PSD-95),while western blot was employed to evaluate PSD-95,SYN,and doublecortin(DCX)proteins.The pathological processing of social defeat and the therapeutic effects of QYS on it was confirmed through behavioral assessment associated with morpho-logic observation.Results:During the whole study,the sucrose preference indices and OFT activity time of CSDS mice were significantly decreased(p≤0.05),and the tail suspension immobil-ity time was significantly increased(p≤0.05),suggesting that the mice had significant depressive symptoms.Treatment with QYS(25,50,and 100 mg/kg)significantly al-leviated depressive symptoms in CSDS mice,which was demonstrated by significantly(p≤0.05 or p≤0.01)reducing the duration of tail-hanging immobility and increasing the tendency of sucrose preference indices and OFT activity time.QYS treatment also significantly increased the expression of DCX,PSD-95,and SYN proteins,which play a crucial role in depression.Conclusions:QYS alleviated these symptoms by enhancing hippocampal neuroplasti-city through upregulating the expression of synapse-associated proteins(SAPs).The therapeutic mechanism of QYS may involve modulating the neuroplasticity of hip-pocampus neurons by altering the expression of SAPs.
基金supported by the National Natural Science Foundation of China,No.30973165,81372108a grant from Clinical Research 5010 Program Mission Statement of Sun Yat-Sen University,China,No.2014001
文摘Gait disorders drastically affect the quality of life of stroke survivors,making post-stroke rehabilitation an important research focus.Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment.However,a large inter-individual variability in the response to noninvasive brain stimulation interventions has been increasingly recognized.We first review the neurophysiology of human gait and post-stroke neuroplasticity for gait recovery,and then discuss how noninvasive brain stimulation techniques could be utilized to enhance gait recovery.While post-stroke neuroplasticity for gait recovery is characterized by use-dependent plasticity,it evolves over time,is idiosyncratic,and may develop maladaptive elements.Furthermore,noninvasive brain stimulation has limited reach capability and is facilitative-only in nature.Therefore,we recommend that noninvasive brain stimulation be used adjunctively with rehabilitation training and other concurrent neuroplasticity facilitation techniques.Additionally,when noninvasive brain stimulation is applied for the rehabilitation of gait impairment in stroke survivors,stimulation montages should be customized according to the specific types of neuroplasticity found in each individual.This could be done using multiple mapping techniques.
基金supported by a grant from the National Natural Science Foundation of China,No.30873390
文摘Lactulose is known to improve cognitive function in patients with early hepatic encephalopa- thy; however, the underlying mechanism remains poorly understood. In the present study, we investigated the behavioral and neurochemical effects of lactulose in a rat model of early hepatic encephalopathy induced by carbon tetrachloride. Immunohistochemistry showed that lactulose treatment promoted neurogenesis and increased the number of neurons and astrocytes in the hippocampus. Moreover, lactulose-treated rats showed shorter escape latencies than model rats in the Morris water maze, indicating that lactulose improved the cognitive impairments caused by hepatic encephalopathy. The present findings suggest that lactulose effectively improves cog- nitive function by enhancing neuroplasticity in a rat model of early hepatic encephalopathy.
文摘The pathophysiology of depression has been traditionally attributed to a chemical imbalance and critical interactions between genetic and environmental risk factors, and antidepressant drugs suggested to act predominantly amplifying monoaminergic neurotransmission. This conceptualization may be currently considered reductive. The current literature about the pathophysiological mechanisms underlying depression, stress-related disorders and antidepressant treatment was examined. In order to provide a critical overview about neuroplasticity, depression and antidepressant drugs, a detailed Pubmed/Medline, Scopus, Psyc Lit, and Psyc Info search to identify all papers and book chapters during the period between 1980 and 2011 was performed. Pathological stress and depression determine relevant brain changes such as loss of dendritic spines and synapses, dendritic atrophy as well as reduction of glial cells(both in number and size) in specific areas such as the hippocampus and prefrontal cortex. An increased dendritic arborisation and synaptogenesis may instead be observed in the amygdala as a consequence of depression and stress-related disorders. While hippocampal and prefrontal functioning was impaired, amygdala functioning was abnormally amplified. Most of molecular abnormalities and biological changes of aberrant neuroplasticity may be explained by the action of glutamate. Antidepressant treatment is associated with neurogenesis, gliogenesis, dendritic arborisation, new synapse formation and cell survival both in the hippocampus and prefrontal cortex. Antidepressants(ADs) induce neuroplasticity mechanisms reversing the pathological effects of depression and stress-related disorders. The neuroplasticity hypothesis may explain the therapeutic and prophylactic action of ADs representing a new innovative approach to the pathophysiology of depression and stress-related disorders.
基金supported by grants from Edith Cowan Universitythe McCusker Alzheimer’s Research Foundationthe National Health and Medical Research Council
文摘Dear editors,Neurodegenerative diseases are now associated with the global obesity and diabetes epidemic in the developing and developed world.Neurodegenerative diseases are a heterogeneous group of disorders with complex factors such as neurohumoral,endocrine and environmental factors involved in induction of these neurodegenerative diseases.The future of science and medicine in neurodegenerative diseases is now dependent on nutritional genomics with insulin resistance a major factor in the induction of neurodegenerative diseases.Nutritional genomics now involves the anti-aging gene Sirtuin 1(Sirt 1)that is important to the prevention of insulin resistance with its critical involvement in the immune system(Martins,2018a,b).Sirt 1 inactivation leads to toxic immune reactions connected to the acceleration of neuron death in various communities.Appetite control with relevance to immunometabolism has become of critical importance to the treatment of neurodegeneration(Figure 1).Nutritional diets activate the heat shock gene Sirt 1 to prevent the increase in heat shock proteins connected to autoimmune disease,mitophagy(Martins,2018a,b)and irreversible programmed cell death in global populations(Figure 1).
基金supported by the FWF Special Research Program(SFB)F44(F4413-B23)"Cell Signaling in Chronic CNS Disorders",and through funding from the European Union’s Seventh Framework Program(FP7/2007-2013)under grant agreements n°HEALTH-F2-2011-278850(INMi ND),n°HEALTH-F2-2011-279288(IDEA),n°FP7-REGPOT-316120(Glow Brain)a startup grant from the Faculty Recharge Programme,University Grants Commission(UGC-FRP),New Delhi,India(to MK)+1 种基金a research grant from DST-SERB,New Delhi,India(EEQ/2016/000639)(to MK)an Early Career Research Award(ECR/2016/000741)(to MK)
文摘The brain is a dynamic organ of the biological renaissance due to the existence of neuroplasticity. Adult neurogenesis abides by every aspect of neuroplasticity in the intact brain and contributes to neural regeneration in response to brain diseases and injury. The occurrence of adult neurogenesis has unequivocally been witnessed in human subjects, experimental and wildlife research including rodents, bats and cetaceans. Adult neurogenesis is a complex cellular process, in which generation of neuroblasts namely, neuroblastosis appears to be an integral process that occur in the limbic system and basal ganglia in addition to the canonical neurogenic niches. Neuroblastosis can be regulated by various factors and contributes to different functions of the brain. The characteristics and fate of neuroblasts have been found to be different among mammals regardless of their cognitive functions. Recently, regulation of neuroblastosis has been proposed for the sensorimotor interface and regenerative neuroplasticity of the adult brain. Hence, the understanding of adult neurogenesis at the functional level of neuroblasts requires a great scientific attention. Therefore, this mini-review provides a glimpse into the conceptual development of neuroplasticity, discusses the possible role of different types of neuroblasts and signifies neuroregenerative failure as a potential cause of dementia.
基金the Spastic Paraplegia Foundation(SPF)Professor Peter Bede and the Computational Neuroimaging Group are also the Health Research Board(HRB EIA-2017-019)+3 种基金the Irish Institute of Clinical Neuroscience(IICN)the EU Joint Programme-Neurodegenerative Disease Research(JPND)the Andrew Lydon scholarshipthe Iris O'Brien Foundation。
文摘Amyotrophic lateral sclerosis is a relentlessly progressive multi-system condition.The clinical picture is dominated by upper and lower motor neuron degeneration,but extra-motor pathology is increasingly recognized,including cerebellar pathology.Post-mortem and neuroimaging studies primarily focus on the chara cterization of supratentorial disease,des pite emerging evidence of cerebellar degeneration in amyotrophic lateral sclerosis.Cardinal clinical features of amyotrophic lateral sclerosis,such as dysarthria,dysphagia,cognitive and behavioral deficits,saccade abnormalities,gait impairment,respiratory weakness and pseudobulbar affect are likely to be exacerbated by co-existing cerebellar pathology.This review summarizes in vivo and post mortem evidence for cerebellar degeneration in amyotrophic lateral scle rosis.Structural imaging studies consistently capture cerebellar grey matter volume reductions,diffusivity studies readily detect both intra-cerebellar and cerebellar peduncle white matter alte rations and functional imaging studies commonly report increased functional connectivity with supratentorial regions.Increased functional connectivity is commonly interpreted as evidence of neuro plasticity representing compensatory processes despite the lack of post-mortem validation.There is a scarcity of post-mortem studies focusing on cerebellar alte rations,but these detect pTDP-43 in cerebellar nuclei.Ce rebellar pathology is an overloo ked facet of neurodegeneration in amyotrophic lateral sclerosis despite its contribution to a multitude of clinical symptoms,wides p read connectivity to spinal and supratentorial regions and putative role in compensating for the degeneration of primary motor regions.
文摘Depression is a common mental disorder and one of the leading causes of disability around the world.Monoaminergic antidepressants often take weeks to months to work and are not effective for all patients.This has led to a search for a better understanding of the pathogenesis of depression as well as to the development of novel antidepressants.One such novel antidepressant is ketamine,which has demonstrated both clinically promising results and contributed to new explanatory models of depression,including the potential role of neuroplasticity in depression.Early clinical trials are now showing promising results of serotonergic psychedelics for depression;however,their mechanism of action remains poorly understood.This paper seeks to review the effect of depression,classic antidepressants,ketamine,and serotonergic psychedelics on markers of neuroplasticity at a cellular,molecular,electrophysiological,functional,structural,and psychological level to explore the potential role that neuroplasticity plays in the treatment response of serotonergic psychedelics.
基金supported by National Institutes of Health Contracts P30-EY008098 and T32-EY017271-06(BethesdaMD)+14 种基金United States Department of Defense DM090217(ArlingtonVA)Alcon Research Institute Young Investigator Grant(Fort WorthTX)Eye and Ear Foundation(PittsburghPA)Research to Prevent Blindness(New YorkNY)Aging Institute Pilot Seed GrantUniversity of Pittsburgh(PittsburghPA)Postdoctoral Fellowship Program in Ocular Tissue Engineering and Regenerative OphthalmologyLouis J.Fox Center for Vision RestorationUniversity of Pittsburgh and UPMC(PittsburghPA)
文摘Blindness provides an unparalleled opportunity to study plasticity of the nervous system in humans.Seminal work in this area examined the often dramatic modifications to the visual cortex that result when visual input is completely absent from birth or very early in life(Kupers and Ptito,2014).More recent studies explored what happens to the visual pathways in the context of acquired blindness.This is particularly relevant as the majority of diseases that cause vision loss occur in the elderly.
文摘Exploratory studies developed at several neurosciences laboratories at universities around the world show us through the experience that there is a biological process called neuroplasticity. Because of this oldest concept about the neuronal formation, scientists also thought that if a particular area of the adult brain was damaged, the nerve cells could not form new connections and the functions controlled by this field of the brain would be permanently lost or could not be regenerate. However, studies have overturned this old view, and currently, scientists recognize that the brain continues to reorganize itself by forming new neural connections during the life. This phenomenon is called neuroplasticity that refers to the potential which the brain should be reorganized by creating new neural pathways to adapt, as it needs.
文摘Neuroplasticity is a condition that is present from birth, being found in the central and peripheral nervous system, in both physiological and pathological terms. Based on the findings, therapeutic and non-therapeutic attempts were tested on spinal cord trauma to recover locomotor function below the level of the injury. The work defined and showed other forms of the term neuroplasticity, talk about some pathological and non-pathological conditions, and, finally, show neuroplasticity and some of its treatments in the spinal cord injury process. A narrative literature review from 2000 to 2020 of the PubMed platform was conducted and analysis of two books for the elaboration of this <span>work. Animal/human studies were included that addressed pathologies,</span> forms of treatment for spinal trauma, and qualis from B1 to A1. Pre-2000 articles, which addressed neuroplasticity only to understand the molecular mechanisms and articles that were not in English, were excluded. As a result, the main molecules and structures that inhibit neuroplasticity were found, and, based on their knowledge, forms of treatments were developed to inhibit these molecules and structures to assist in neuroplasticity and assist in possible functional recovery. It can be concluded that the physiological barriers are already being overcome by the most recent forms of treatment and that soon new studies may propose a form of treatment that is protocoled for all patients.
文摘The rehabilitation of musculoskeletal dysfunctions(MSD)such as osteoarthritis,anterior cruciate ligament injuries and low back pain focuses on symptomatic management of pain followed by stretching and strengthening.However,these interventions focus just on symptomatic pain management and addressing musculoskeletal impairments.But it has been found that neuroplastic changes continue to occur throughout these pathologies and sometimes even are persistent,as conventional rehabilitation doesn’t focus on these changes therefore chances of reinjury increase.Therefore this article discusses underlying neuroplastic changes associated with MSD and neuroplasticity-based interventions for better clinical outcomes.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
基金supported by the National Natural Science Foundation of China,No.82371444(to YZ)the Natural Science Foundation of Hubei Province,No.2022CFB216(to XC)the Key Research Project of Ministry of Science and Technology of China,No.2022ZD021160(to YZ)。
文摘The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.
基金supported by grants from the Zhejiang Provincial Natural Science Foundation(LGJ22H180001)Zhejiang Medical and Health Science and Technology Project(2021KY249)the National Key R&D Program of China(2017YFC1310000).
文摘Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modulatory effect on neural plasticity associated with MSL remains unclarified.This study was therefore designed to compare the role of the left primary motor cortex and the left supplementary motor area proper(SMAp)in modulating MSL across different complexity levels and for both hands,as well as the associated neuroplasticity by applying intermittent theta burst stimulation together with the electroencephalogram and concurrent transcranial magnetic stimulation.Our data demonstrated the role of SMAp stimulation in modulating neural communication to support MSL,which is achieved by facilitating regional activation and orchestrating neural coupling across distributed brain regions,particularly in interhemispheric connections.These findings may have important clinical implications,particularly for motor rehabilitation in populations such as post-stroke patients.
基金supported by the Department of Veterans Affairs(VA Merit Award BX004256)(to AMA)Emory Department of Neurosurgery Catalyst GrantEmory Medical Care Foundation Grant(to AMA and JG)。
文摘Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.
文摘The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.
文摘BACKGROUND:Hemiplegia,a prevalent stroke-related condition,is often studied for motor dysfunction;however,spasticity remains under-researched.Abnormal muscle tone significantly hinders hemiplegic patients’walking recovery.OBJECTIVE:To determine whether early suspension-protected training with a personal assistant machine for stroke patients enhances walking ability and prevents muscle spasms.METHODS:Thirty-two early-stage stroke patients from Shenzhen University General Hospital and the China Rehabilitation Research Center were randomly assigned to the experimental group(n=16)and the control group(n=16).Both groups underwent 4 weeks of gait training under the suspension protection system for 30 minutes daily,5 days a week.The experimental group used the personal assistant machine during training.Three-dimensional gait analysis(using the Cortex motion capture system),Brunnstrom staging,Fugl-Meyer Assessment for lower limb motor function,Fugl-Meyer balance function,and the modified Ashworth Scale were evaluated within 1 week before the intervention and after 4 weeks of intervention.RESULTS AND CONCLUSION:After the 4-week intervention,all outcome measures showed significant changes in each group.The experimental group had a small but significant increase in the modified Ashworth Scale score(P<0.05,d=|0.15|),while the control group had a large significant increase(P<0.05,d=|1.48|).The experimental group demonstrated greater improvements in walking speed(16.5 to 38.44 cm/s,P<0.05,d=|4.01|),step frequency(46.44 to 64.94 steps/min,P<0.05,d=|2.32|),stride length(15.50 to 29.81 cm,P<0.05,d=|3.44|),and peak hip and knee flexion(d=|1.82|to|2.17|).After treatment,the experimental group showed significantly greater improvements than the control group in walking speed(38.44 vs.26.63 cm/s,P<0.05,d=|2.75|),stride length,peak hip and knee flexion(d=|1.31|to|1.45|),step frequency(64.94 vs.59.38 steps/min,P<0.05,d=|0.85|),and a reduced support phase(bilateral:24.31%vs.28.38%,P<0.05,d=|0.88|;non-paretic:66.19%vs.70.13%,P<0.05,d=|0.94|).For early hemiplegia,personal assistant machine-assisted gait training under the suspension protection system helps establish a correct gait pattern,prevents muscle spasms,and improves motor function.
基金funded by the Alexander von Humboldt Stiftungsupported by DFG (SCH W534/6-1 to SWS)
文摘The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage.The latter involves global alterations,making understanding plastic responses triggered by local damage difficult.One key feature of the dentate gyrus is that it contains a well-defined neurogenic niche,the subgranular zone,and beyond neurogenesis,newly born granule cells may maintain a“young”phenotype throughout life,adding to the plastic nature of the structure.Here,we present a novel experimental model of local brain damage in organotypic entorhino-hippocampal cultures that results in the activation of adjacent newly born granule cells.A small piece of filter paper was placed on the surface of the granule cell layer of the dentate gyrus,which evoked a foreign body reaction of astrocytes,along with the activation of local young neurons expressing doublecortin.Forty-eight hours after foreign body placement,the number of doublecortin-immunoreactive cells increased in the subgranular zone in the direct vicinity of the foreign body,whereas overall increased doublecortin immunoreactivity was observed in the granule cell layer and molecular layer of the dentate gyrus.Foreign body placement in the pyramidal layer of the CA1 region evoked a comparable local astroglial reaction but did not lead to an increase in doublecortin-immunoreactive in either the CA1 region or the adjacent dentate gyrus.Seven days after foreign body placement in the dentate gyrus,the increase in doublecortin-immunoreactivity was no longer observed,indicating the transient activation of young cells.However,7 days after foreign body placement,the number of doublecortin-immunoreactive granule cells coimmunoreactive for calbindin was lower than that under the control conditions.As calbindin is a marker for mature granule cells,this result suggests that activated young cells remain at a more immature stage following foreign body placement.Live imaging of retrovirally green fluorescent protein-labeled newly born granule cells revealed the orientation and growth of their dendrites toward the foreign body placement.This novel experimental model of foreign body placement in organotypic entorhino-hippocampal cultures could serve as a valuable tool for studying both glial reactivity and neuronal plasticity,specifically of newly born neurons under controlled in vitro conditions.
基金an Association of British Neurologists Doctoral Research Fellowship co-funded by the Berkeley Foundation and the Stroke Associationsupported by a NIHR Academic Clinical Lectureship in Neurology CL-2020-04-004 NIHR+3 种基金supported by the NIHR Sheffield Biomedical Research Centre(BRC)NIHR Sheffield Clinical Research Facility(CRF)supported by NIHR EME Project Grant NIHR133169funded by Alzheimer’s Research UK Senior Research Fellowship(ARUK-SRF2017B-1)。
文摘Stroke remains a leading cause of long-term disability worldwide.There is an unmet need for neuromodulatory therapies that can mitigate against neurovascular injury and potentially promote neurological recovery.Transcutaneous vagus nerve stimulation has been demonstrated to show potential therapeutic effects in both acute and chronic stroke.However,previously published research has only investigated a narrow range of stimulation settings and indications.In this review,we detail the ongoing studies of transcutaneous vagus nerve stimulation in stroke through systematic searches of registered clinical trials.We summarize the upcoming clinical trials of transcutaneous vagus nerve stimulation in stroke,highlighting their indications,parameter settings,scope,and limitations.We further explore the challenges and barriers associated with the implementation of transcutaneous vagus nerve stimulation in acute stroke and stroke rehabilitation,focusing on critical aspects such as stimulation settings,target groups,biomarkers,and integration with rehabilitation interventions.