Artificial intelligence(AI)is a sophisticated technology that investigates and formulates theories,methods,techniques,and application systems designed to emulate,expand,and enhance human intelligence[1].In recent year...Artificial intelligence(AI)is a sophisticated technology that investigates and formulates theories,methods,techniques,and application systems designed to emulate,expand,and enhance human intelligence[1].In recent years,the rapid advancement of key AI technologies,including image recognition,machine learning,neural networks and robotics,has significantly propelled multidisciplinary integration and development within the medical field[2].The considerable potential of AI in the field of medicine,as evidenced by its formidable data processing and analytical capabilities,has been demonstrated in a number of ways.展开更多
A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at u...A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at un- sampled sites in a mountain region. The IRBFANNs hybridize the advantages of the artificial neural networks and the neural networks integration approach. Three experimental projects under different sampling densities are carried out to study the performance of the proposed IRBFANNs-based interpolation method. This novel method is compared with six peer spatial interpolation methods based on the root mean square error and visual evaluation of the distribution maps of Mn elements. The experimental results show that the proposed method performs better in accuracy and stability. Moreover, the proposed method can provide more details in the spatial distribution maps than the compared interpolation methods in the cases of sparse sampling density.展开更多
In this paper,an adaptive neural-network(NN)output feedback optimal control problem is studied for a class of strict-feedback nonlinear systems with unknown internal dynamics,input saturation and state constraints.Neu...In this paper,an adaptive neural-network(NN)output feedback optimal control problem is studied for a class of strict-feedback nonlinear systems with unknown internal dynamics,input saturation and state constraints.Neural networks are used to approximate unknown internal dynamics and an adaptive NN state observer is developed to estimate immeasurable states.Under the framework of the backstepping design,by employing the actor-critic architecture and constructing the tan-type Barrier Lyapunov function(BLF),the virtual and actual optimal controllers are developed.In order to accomplish optimal control effectively,a simplified reinforcement learning(RL)algorithm is designed by deriving the updating laws from the negative gradient of a simple positive function,instead of employing existing optimal control methods.In addition,to ensure that all the signals in the closed-loop system are bounded and the output can follow the reference signal within a bounded error,all state variables are confined within their compact sets all times.Finally,a simulation example is given to illustrate the effectiveness of the proposed control strategy.展开更多
Recently, deep neural networks, which include convolutional neural networks(CNNs), have been widely applied to acoustic scene classification(ASC). Motivated by the fact that some simplified CNNs have shown improve...Recently, deep neural networks, which include convolutional neural networks(CNNs), have been widely applied to acoustic scene classification(ASC). Motivated by the fact that some simplified CNNs have shown improvements over deep CNNs, such as Visual Geometry Group Net(VGG-Net), we have figured out how to simplify the VGG-Net style architecture to a shallow CNN with improved performance. Max pooling and batch normalization are also applied for better accuracy. With a series of controlled tests on detection and classification of acoustic scenes and events(DCASE) 2016 data sets, our shallow CNN achieves 6.7% improvement, and reduces time complexity to 5%, compared with the VGG-Net style CNN.展开更多
In this paper, we prove the existence and the global exponential stability of the unique weighted pseudo almost-periodic solution of shunting inhibitory cellular neural networks with mixed time-varying delays comprisi...In this paper, we prove the existence and the global exponential stability of the unique weighted pseudo almost-periodic solution of shunting inhibitory cellular neural networks with mixed time-varying delays comprising different discrete and distributed time delays. Some sufficient conditions are given for the existence and the global exponential stability of the weighted pseudo almost-periodic solution by employing fixed point theorem and differential inequality techniques. The results of this paper complement the previously known ones. Finally, an illustrative example is given to demonstrate the effectiveness of our results.展开更多
This paper deals with a real-life application of epilepsy classification, where three phases of absence seizure, namely pre-seizure, seizure and seizure-free, are classified using real clinical data. Artificial neural...This paper deals with a real-life application of epilepsy classification, where three phases of absence seizure, namely pre-seizure, seizure and seizure-free, are classified using real clinical data. Artificial neural network (ANN) and support vector machines (SVMs) combined with su- pervised learning algorithms, and k-means clustering (k-MC) combined with unsupervised techniques are employed to classify the three seizure phases. Different techniques to combine binary SVMs, namely One Vs One (OvO), One Vs All (OVA) and Binary Decision Tree (BDT), are employed for multiclass classification. Comparisons are performed with two traditional classification methods, namely, k-Nearest Neighbour (k- NN) and Naive Bayes classifier. It is concluded that SVM-based classifiers outperform the traditional ones in terms of recognition accuracy and robustness property when the original clinical data is distorted with noise. Furthermore, SVM-based classifier with OvO provides the highest recognition accuracy, whereas ANN-based classifier overtakes by demonstrating maximum accuracy in the presence of noise.展开更多
The objective of this paper was to predict the residual strength of post impacted carbon/epoxy composite laminates using an online acoustic emission (AE) monitoring and artificial neural networks (ANN). The lamina...The objective of this paper was to predict the residual strength of post impacted carbon/epoxy composite laminates using an online acoustic emission (AE) monitoring and artificial neural networks (ANN). The laminates were made from eight-layered carbon (in woven mat form) with epoxy as the binding medium by hand lay-up technique and cured at a pressure of 100 kg/cm2 under room temperature using a 30 ton capacity compression molding machine for 24 h. 21 tensile specimens (ASTM D3039 standard) were cut from the cross ply laminates. 16 specimens were subjected to impact load from three different heights using a Fractovis Plus drop impact tester. Both impacted and non-impacted specimens were subjected to uniaxial tension under the acoustic emission monitoring using a 100 kN FIE servo hydraulic universal testing machine. The dominant AE parameters such as counts, energy, duration, rise time and amplitude are recorded during monitoring. Cumulative counts corresponding to the amplitude ranges obtained during the tensile testing are used to train the network. This network can be used to predict the failure load of a similar specimen subjected to uniaxial tension under acoustic emission monitoring for certain percentage of the average failure load.展开更多
The cone-shaped kernel distributions of vibration acceleration signals, whichwere acquired from the cylinder head in eight different states of a valve train, were calculatedand displayed in grey images. Probabilistic ...The cone-shaped kernel distributions of vibration acceleration signals, whichwere acquired from the cylinder head in eight different states of a valve train, were calculatedand displayed in grey images. Probabilistic Neural Networks ( PAW) was used to classify the imagesdirectly after the images were normalized. By this way, the problem of fault diagnosis for a valvetrain was transferred to the classification of time-frequency images. As there is no need to extractfeatures from time-frequency images before classification, the fault diagnosis process is highlysimplified. The experimental results show that the vibration signals can be classified accurately bythe proposed methods.展开更多
The problem of the global exponential stability of a class of Hopfield neural networks is considered. Based on nonnegative matrix theory, a sufficient condition for the existence, uniqueness and global exponential sta...The problem of the global exponential stability of a class of Hopfield neural networks is considered. Based on nonnegative matrix theory, a sufficient condition for the existence, uniqueness and global exponential stability of the equilibrium point is presented. And the upper bound for the degree of exponential stability is given. Moreover, a simulation is given to show the effectiveness of the result.展开更多
Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, incl...Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, including the change of groundwater level, the thickness of compressible sediments and the building area by using remote sensing and GIS tools in the upper-middle part of alluvial-proluvial plain fan of the Chaobai River in Beijing. Based on the spatial analysis of the land subsidence and three factors, there exist significant non-linear relationship between the vertical displacement and three factors. The Back Propagation Neural Network (BPN) model combined with Genetic Algorithm (GA) was used to simulate regional distribution of the land subsidence. Results showed that at field scale, the groundwater level and land subsidence showed a significant linear relationship. However, at regional scale, the spatial distribution of groundwater depletion funnel did not overlap with the land subsidence funnel. As to the factor of compressible strata, the places with the biggest compressible strata thickness did not have the largest vertical displacement. The distributions of building area and land subsidence have no obvious spatial relationships. The BPN-GA model simulation results illustrated that the accuracy of the trained model during fifty years is acceptable with an error of 51% of verification data less than 20 mm and the average of the absolute error about 32 mm. The BPN model could be utilized to simulate the general distribution of land subsidence in the study area. Overall, this work contributes to better understand the complex relationship between the land subsidence and three influencing factors. And the distribution of the land subsidence can be simulated by the trained BPN-GA model with the limited available dada and acceptable accuracy.展开更多
In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occu...In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occurs in HHT, which leads to a series of problems such as modal aliasing and false IMF (Intrinsic Mode Func- tion). To counter such problems in HHT, a new method is put forward to process signal by combining the general- ized regression neural network (GRNN) with the bound- ary local characteristic-scale continuation (BLCC). Firstly, the improved EMD (Empirical Mode Decompo- sition) method is used to inhibit the end effect problem that appeared in conventional EMD. Secondly, the gen- erated IMF components are used in HHT. Simulation and measurement experiment for the cases of time domain, frequency domain and related parameters of Hilbert- Huang spectrum show that the method described here can restrain the end effect compared with the results obtained through mirror continuation, as the absolute percentage of the maximum mean of the beginning end point offset and the terminal point offset are reduced from 30.113% and 27.603% to 0.510% and 6.039% respectively, thus reducing the modal aliasing, and eliminating the false IMF components of HHT. The proposed method caneffectively inhibit end effect, reduce modal aliasing and false IMF components, and show the real structure of signal components accuratelX.展开更多
A type of wavelet neural network, in which the scale function isadopted only, is proposed in this paper for non-linear dynamicprocess modelling. Its network size is decreased significantly andthe weight coefficients c...A type of wavelet neural network, in which the scale function isadopted only, is proposed in this paper for non-linear dynamicprocess modelling. Its network size is decreased significantly andthe weight coefficients can be estimated by a linear algorithm. Thewavelet neural network holds some advantages superior to other typesof neural networks. First, its network structure is easy to specifybased on its theoretical analysis and intuition. Secondly, networktraining does not rely on stochastic gradient type techniques andavoids the problem of poor convergence or undesirable local minima.展开更多
The real dynamic thrust measurement system usually tends to be nonlinear due to the complex characteristics of the rig, pipes connection, etc. For a real dynamic measuring system, the nonlinearity must be eliminated b...The real dynamic thrust measurement system usually tends to be nonlinear due to the complex characteristics of the rig, pipes connection, etc. For a real dynamic measuring system, the nonlinearity must be eliminated by some adequate methods. In this paper, a nonlinear model of dynamic thrust measurement system is established by using radial basis function neural network (RBF-NN), where a novel multi-step force generator is designed to stimulate the nonlinearity of the system, and a practical compensation method for the measurement system using left inverse model is proposed. Left inverse model can be considered as a perfect dynamic compensation of the dynamic thrust measurement system, and in practice, it can be approximated by RBF-NN based on least mean square (LMS) algorithms. Different weights are set for producing the multi-step force, which is the ideal input signal of the nonlinear dynamic thrust measurement system. The validity of the compensation method depends on the engine's performance and the tolerance error 0.5%, which is commonly demanded in engineering. Results from simulations and experiments show that the practical compensation using left inverse model based on RBF-NN in dynamic thrust measuring system can yield high tracking accuracy than the conventional methods.展开更多
Sheet metal forming is widely applied to automobile, aviation, space flight, ship, instrument, and appliance industries.In this paper, based on analyzing the shortcoming of general finite element analysis (FEA), the c...Sheet metal forming is widely applied to automobile, aviation, space flight, ship, instrument, and appliance industries.In this paper, based on analyzing the shortcoming of general finite element analysis (FEA), the conception of parametric finite element analysis (PFEA) is presented. The parametric finite element analysis, artificial neural networks(ANN) and genetic algorithm (GA) are combined to research thoroughly on the problems of process parametersoptimization of sheet metal forming. The author programs the optimization scheme and applies it in a research ofoptimization problem of inside square hole flanging technological parameters. The optimization result coincides wellwith the result of experiment. The research shows that the optimization scheme offers a good new way in die designand sheet metal forming field.展开更多
In order to improve the Mandarin vowel pronunciation quality assessment, a nox/el formant feature was proposed and applied to formant classification for Chinese Mandarin vowel pronunciation quality evaluation. Formant...In order to improve the Mandarin vowel pronunciation quality assessment, a nox/el formant feature was proposed and applied to formant classification for Chinese Mandarin vowel pronunciation quality evaluation. Formant candidates of each frame were plotted on the time-frequency plane to form a bitmap, and its Gabor feature was extracted to represent the formant trajectory. The feature was then classified by using GMM model and the classification posterior probability was mapped to pronunciation quality grade. The experiments of comparing the Gabor transformation based formant trajectory feature with several other kinds of traditionally used features show that with this method, a human-machine scoring correlation coefficient (CC) of 0.842 can be achieved, which is better than the result of 0.832 by traditional speech recognition techniques. At the same time, considering that the long-term information of formant classification and the short-term information of speech recognition technique are complementary to each other, it is investigated to combine their results with linear or nonlinear methods to further improve the evaluation performance. As a result, experiments on PSK show that the best CC of 0.913, which is very close to the correlation of inter-human rating of 0.94, is gotten by using neural network.展开更多
Handwritten signature recognition is presented based on an angle feature vector by using the artificial neural network (ANN) in this research. Each signature image will be represented by an angle vector. The feature...Handwritten signature recognition is presented based on an angle feature vector by using the artificial neural network (ANN) in this research. Each signature image will be represented by an angle vector. The feature vector will constitute the input to the ANN. The collection of signature images is divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested by recognizing the signatures. When a signature is classified correctly, it is considered correct recognition, otherwise it is a failure. The achieved recognition rate of this system is 94%.展开更多
In granule processing industries, acquisition of particle size and shape parameters is a common procedure, and volumetric measurement is of great importance in dealing with particle sizing and gradation. To eradicate ...In granule processing industries, acquisition of particle size and shape parameters is a common procedure, and volumetric measurement is of great importance in dealing with particle sizing and gradation. To eradicate the major drawbacks with manual gauge, this paper proposes an optical approach using Back Propagation (BP) neural network to estimate the particle volume based on the two-Dimensional (2D) image information. To achieve the better network efficiency and structure simplicity, Principal Component Analysis (PCA) is adopted to reduce the dimensions of network inputs To overcome the shortcomings of generic BP network for being slow to converge and vulnerable to being trapped in local minimum, Levenberg-Marquardt (LM) algorithm is applied to achieve a higher speed and a lower error rate. The real particle data is utilized in training and testing the presented network. The experimental result suggests that the proposed neural network is capable of estimating aggregate volume with satisfactory precision and superior to the generic BP network in terms of perforxnance capacity.展开更多
The method of determination of elastic moduli of the geological section rocks had been developed in real conditions. The method is based on application of non-classically linearized theory of elastic waves' propagati...The method of determination of elastic moduli of the geological section rocks had been developed in real conditions. The method is based on application of non-classically linearized theory of elastic waves' propagation in the deformable media and utilization of neural networks when creating the geoseismic model. It is proposed to forecast the thin-layer model of medium by velocities of the shear waves on the base of seismic inversion of 2D profile by neural networks and geophysical well logging data. The method had been tested on materials of geophysical well logging data and 2D seismic profile related to one of the structures in the South-Caspian depression. The specific results for Poisson coefficient and elastic moduli of the third order had been obtained. The mentioned method can also be applied to forecast of other physical-mechanical properties of the medium.展开更多
Energy efficiency in industrial systems remains a critical challenge,with traditional data-driven models often limited by model accuracy and data availability.Incorporation of physical laws governing energy systems ca...Energy efficiency in industrial systems remains a critical challenge,with traditional data-driven models often limited by model accuracy and data availability.Incorporation of physical laws governing energy systems can improve performance and physical consistency,but the model often struggles with the calculation of loss and ignores dynamic interplays between sub-systems,which can result in oversimplification and a lack of practical applicability.Therefore,this study investigated a theoretical framework for developing a law of conservation-guided neural network aimed at enhancing energy efficiency prediction in industrial systems.The framework integrates physical principles directly into floating nodes constructed using a long short-term memory architecture to help the model formulate the relationship between process variables,while gradient aggregation increases liquidity and interpretability.Through evaluation of two large-scale case studies—vinyl chloride monomer and detergent powder production—the proposed model produced substantial improvements in prediction accuracy and model reliability,with a test prediction improvement of 12.2%and 5.87%over published methods.Compared to network architecture modification approaches,the proposed model provided higher reliability and reproducibility in energy efficiency predictions.Moreover,the model successfully identified energy inefficiencies,resulting in a 4.21%reduction in energy consumption and a corresponding 377.35 tons of carbon emissions reduction.展开更多
基金supported by the National Natural Science Foundation of China(No.82205271)the Chinese Medicine Research Project supported by the Hubei Administration of Traditional Chinese Medicine(No.ZY2025L183)the Graduate Innovation Projects of Hebei University of Chinese Medicine(No.XCXZZBS2024005).
文摘Artificial intelligence(AI)is a sophisticated technology that investigates and formulates theories,methods,techniques,and application systems designed to emulate,expand,and enhance human intelligence[1].In recent years,the rapid advancement of key AI technologies,including image recognition,machine learning,neural networks and robotics,has significantly propelled multidisciplinary integration and development within the medical field[2].The considerable potential of AI in the field of medicine,as evidenced by its formidable data processing and analytical capabilities,has been demonstrated in a number of ways.
基金The National Natural Science Foundation of China(No.61261007,61062005)the Key Program of Yunnan Natural Science Foundation(No.2013FA008)
文摘A novel spatial interpolation method based on integrated radial basis function artificial neural networks (IRBFANNs) is proposed to provide accurate and stable predictions of heavy metals concentrations in soil at un- sampled sites in a mountain region. The IRBFANNs hybridize the advantages of the artificial neural networks and the neural networks integration approach. Three experimental projects under different sampling densities are carried out to study the performance of the proposed IRBFANNs-based interpolation method. This novel method is compared with six peer spatial interpolation methods based on the root mean square error and visual evaluation of the distribution maps of Mn elements. The experimental results show that the proposed method performs better in accuracy and stability. Moreover, the proposed method can provide more details in the spatial distribution maps than the compared interpolation methods in the cases of sparse sampling density.
基金This work was supported by National Natural Science Foundation of China(61822307,61773188).
文摘In this paper,an adaptive neural-network(NN)output feedback optimal control problem is studied for a class of strict-feedback nonlinear systems with unknown internal dynamics,input saturation and state constraints.Neural networks are used to approximate unknown internal dynamics and an adaptive NN state observer is developed to estimate immeasurable states.Under the framework of the backstepping design,by employing the actor-critic architecture and constructing the tan-type Barrier Lyapunov function(BLF),the virtual and actual optimal controllers are developed.In order to accomplish optimal control effectively,a simplified reinforcement learning(RL)algorithm is designed by deriving the updating laws from the negative gradient of a simple positive function,instead of employing existing optimal control methods.In addition,to ensure that all the signals in the closed-loop system are bounded and the output can follow the reference signal within a bounded error,all state variables are confined within their compact sets all times.Finally,a simulation example is given to illustrate the effectiveness of the proposed control strategy.
基金Supported by the National Natural Science Foundation of China(61102127,61231015)National High Technology Research and Development Program of China(863 Program,2015AA016306)+3 种基金National Key Research and Development Program(2016YFB0502204)the Innovation Fund of Shanghai Aerospace Science and Technology(SAST,2015014)the Key Technology R&D Program of Hubei Provence(2014BAA153)SKLSE-2015-A-06
文摘Recently, deep neural networks, which include convolutional neural networks(CNNs), have been widely applied to acoustic scene classification(ASC). Motivated by the fact that some simplified CNNs have shown improvements over deep CNNs, such as Visual Geometry Group Net(VGG-Net), we have figured out how to simplify the VGG-Net style architecture to a shallow CNN with improved performance. Max pooling and batch normalization are also applied for better accuracy. With a series of controlled tests on detection and classification of acoustic scenes and events(DCASE) 2016 data sets, our shallow CNN achieves 6.7% improvement, and reduces time complexity to 5%, compared with the VGG-Net style CNN.
文摘In this paper, we prove the existence and the global exponential stability of the unique weighted pseudo almost-periodic solution of shunting inhibitory cellular neural networks with mixed time-varying delays comprising different discrete and distributed time delays. Some sufficient conditions are given for the existence and the global exponential stability of the weighted pseudo almost-periodic solution by employing fixed point theorem and differential inequality techniques. The results of this paper complement the previously known ones. Finally, an illustrative example is given to demonstrate the effectiveness of our results.
文摘This paper deals with a real-life application of epilepsy classification, where three phases of absence seizure, namely pre-seizure, seizure and seizure-free, are classified using real clinical data. Artificial neural network (ANN) and support vector machines (SVMs) combined with su- pervised learning algorithms, and k-means clustering (k-MC) combined with unsupervised techniques are employed to classify the three seizure phases. Different techniques to combine binary SVMs, namely One Vs One (OvO), One Vs All (OVA) and Binary Decision Tree (BDT), are employed for multiclass classification. Comparisons are performed with two traditional classification methods, namely, k-Nearest Neighbour (k- NN) and Naive Bayes classifier. It is concluded that SVM-based classifiers outperform the traditional ones in terms of recognition accuracy and robustness property when the original clinical data is distorted with noise. Furthermore, SVM-based classifier with OvO provides the highest recognition accuracy, whereas ANN-based classifier overtakes by demonstrating maximum accuracy in the presence of noise.
文摘The objective of this paper was to predict the residual strength of post impacted carbon/epoxy composite laminates using an online acoustic emission (AE) monitoring and artificial neural networks (ANN). The laminates were made from eight-layered carbon (in woven mat form) with epoxy as the binding medium by hand lay-up technique and cured at a pressure of 100 kg/cm2 under room temperature using a 30 ton capacity compression molding machine for 24 h. 21 tensile specimens (ASTM D3039 standard) were cut from the cross ply laminates. 16 specimens were subjected to impact load from three different heights using a Fractovis Plus drop impact tester. Both impacted and non-impacted specimens were subjected to uniaxial tension under the acoustic emission monitoring using a 100 kN FIE servo hydraulic universal testing machine. The dominant AE parameters such as counts, energy, duration, rise time and amplitude are recorded during monitoring. Cumulative counts corresponding to the amplitude ranges obtained during the tensile testing are used to train the network. This network can be used to predict the failure load of a similar specimen subjected to uniaxial tension under acoustic emission monitoring for certain percentage of the average failure load.
文摘The cone-shaped kernel distributions of vibration acceleration signals, whichwere acquired from the cylinder head in eight different states of a valve train, were calculatedand displayed in grey images. Probabilistic Neural Networks ( PAW) was used to classify the imagesdirectly after the images were normalized. By this way, the problem of fault diagnosis for a valvetrain was transferred to the classification of time-frequency images. As there is no need to extractfeatures from time-frequency images before classification, the fault diagnosis process is highlysimplified. The experimental results show that the vibration signals can be classified accurately bythe proposed methods.
基金supported by Sichuan Province Foundation for Applied Basic Research and Leaders of Science and Technology under Grant No.05JY029-068-2
文摘The problem of the global exponential stability of a class of Hopfield neural networks is considered. Based on nonnegative matrix theory, a sufficient condition for the existence, uniqueness and global exponential stability of the equilibrium point is presented. And the upper bound for the degree of exponential stability is given. Moreover, a simulation is given to show the effectiveness of the result.
基金Under the auspices of National Natural Science Foundation of China(No.41201420,41130744)Beijing Nova Program(No.Z111106054511097)Foundation of Beijing Municipal Commission of Education(No.KM201110028016)
文摘Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, including the change of groundwater level, the thickness of compressible sediments and the building area by using remote sensing and GIS tools in the upper-middle part of alluvial-proluvial plain fan of the Chaobai River in Beijing. Based on the spatial analysis of the land subsidence and three factors, there exist significant non-linear relationship between the vertical displacement and three factors. The Back Propagation Neural Network (BPN) model combined with Genetic Algorithm (GA) was used to simulate regional distribution of the land subsidence. Results showed that at field scale, the groundwater level and land subsidence showed a significant linear relationship. However, at regional scale, the spatial distribution of groundwater depletion funnel did not overlap with the land subsidence funnel. As to the factor of compressible strata, the places with the biggest compressible strata thickness did not have the largest vertical displacement. The distributions of building area and land subsidence have no obvious spatial relationships. The BPN-GA model simulation results illustrated that the accuracy of the trained model during fifty years is acceptable with an error of 51% of verification data less than 20 mm and the average of the absolute error about 32 mm. The BPN model could be utilized to simulate the general distribution of land subsidence in the study area. Overall, this work contributes to better understand the complex relationship between the land subsidence and three influencing factors. And the distribution of the land subsidence can be simulated by the trained BPN-GA model with the limited available dada and acceptable accuracy.
基金Supported by National Natural Science Foundation of China(Grant No.51375467)Quality Inspection of Public Welfare Industry Research Projects,China(Grant No.201410009)
文摘In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occurs in HHT, which leads to a series of problems such as modal aliasing and false IMF (Intrinsic Mode Func- tion). To counter such problems in HHT, a new method is put forward to process signal by combining the general- ized regression neural network (GRNN) with the bound- ary local characteristic-scale continuation (BLCC). Firstly, the improved EMD (Empirical Mode Decompo- sition) method is used to inhibit the end effect problem that appeared in conventional EMD. Secondly, the gen- erated IMF components are used in HHT. Simulation and measurement experiment for the cases of time domain, frequency domain and related parameters of Hilbert- Huang spectrum show that the method described here can restrain the end effect compared with the results obtained through mirror continuation, as the absolute percentage of the maximum mean of the beginning end point offset and the terminal point offset are reduced from 30.113% and 27.603% to 0.510% and 6.039% respectively, thus reducing the modal aliasing, and eliminating the false IMF components of HHT. The proposed method caneffectively inhibit end effect, reduce modal aliasing and false IMF components, and show the real structure of signal components accuratelX.
基金Supported by the Eu Information Technologies Programme Project(No. 22416) and National High Tech R&D Project(863/Computer Integrated Manufacture System AA413130) of China.
文摘A type of wavelet neural network, in which the scale function isadopted only, is proposed in this paper for non-linear dynamicprocess modelling. Its network size is decreased significantly andthe weight coefficients can be estimated by a linear algorithm. Thewavelet neural network holds some advantages superior to other typesof neural networks. First, its network structure is easy to specifybased on its theoretical analysis and intuition. Secondly, networktraining does not rely on stochastic gradient type techniques andavoids the problem of poor convergence or undesirable local minima.
文摘The real dynamic thrust measurement system usually tends to be nonlinear due to the complex characteristics of the rig, pipes connection, etc. For a real dynamic measuring system, the nonlinearity must be eliminated by some adequate methods. In this paper, a nonlinear model of dynamic thrust measurement system is established by using radial basis function neural network (RBF-NN), where a novel multi-step force generator is designed to stimulate the nonlinearity of the system, and a practical compensation method for the measurement system using left inverse model is proposed. Left inverse model can be considered as a perfect dynamic compensation of the dynamic thrust measurement system, and in practice, it can be approximated by RBF-NN based on least mean square (LMS) algorithms. Different weights are set for producing the multi-step force, which is the ideal input signal of the nonlinear dynamic thrust measurement system. The validity of the compensation method depends on the engine's performance and the tolerance error 0.5%, which is commonly demanded in engineering. Results from simulations and experiments show that the practical compensation using left inverse model based on RBF-NN in dynamic thrust measuring system can yield high tracking accuracy than the conventional methods.
基金This work was supported by the Natural Science Foundation of the Jiangxi Province of China under grant No.12 and the Committee of Science and Technology of Jiangxi Province, China.
文摘Sheet metal forming is widely applied to automobile, aviation, space flight, ship, instrument, and appliance industries.In this paper, based on analyzing the shortcoming of general finite element analysis (FEA), the conception of parametric finite element analysis (PFEA) is presented. The parametric finite element analysis, artificial neural networks(ANN) and genetic algorithm (GA) are combined to research thoroughly on the problems of process parametersoptimization of sheet metal forming. The author programs the optimization scheme and applies it in a research ofoptimization problem of inside square hole flanging technological parameters. The optimization result coincides wellwith the result of experiment. The research shows that the optimization scheme offers a good new way in die designand sheet metal forming field.
基金Project(61062011)supported by the National Natural Science Foundation of ChinaProject(2010GXNSFA013128)supported by the Natural Science Foundation of Guangxi Province,China
文摘In order to improve the Mandarin vowel pronunciation quality assessment, a nox/el formant feature was proposed and applied to formant classification for Chinese Mandarin vowel pronunciation quality evaluation. Formant candidates of each frame were plotted on the time-frequency plane to form a bitmap, and its Gabor feature was extracted to represent the formant trajectory. The feature was then classified by using GMM model and the classification posterior probability was mapped to pronunciation quality grade. The experiments of comparing the Gabor transformation based formant trajectory feature with several other kinds of traditionally used features show that with this method, a human-machine scoring correlation coefficient (CC) of 0.842 can be achieved, which is better than the result of 0.832 by traditional speech recognition techniques. At the same time, considering that the long-term information of formant classification and the short-term information of speech recognition technique are complementary to each other, it is investigated to combine their results with linear or nonlinear methods to further improve the evaluation performance. As a result, experiments on PSK show that the best CC of 0.913, which is very close to the correlation of inter-human rating of 0.94, is gotten by using neural network.
基金supported by the University of Misurata,Libya and the College of Industrial Technology,Libya
文摘Handwritten signature recognition is presented based on an angle feature vector by using the artificial neural network (ANN) in this research. Each signature image will be represented by an angle vector. The feature vector will constitute the input to the ANN. The collection of signature images is divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested by recognizing the signatures. When a signature is classified correctly, it is considered correct recognition, otherwise it is a failure. The achieved recognition rate of this system is 94%.
基金Supported by Ningbo Natural Science Foundation (No. 2006A610016)Foundation of Ministry of Education for Returned Overseas Students & Scholars (SRF for ROCS, SEM. No. 2006699)
文摘In granule processing industries, acquisition of particle size and shape parameters is a common procedure, and volumetric measurement is of great importance in dealing with particle sizing and gradation. To eradicate the major drawbacks with manual gauge, this paper proposes an optical approach using Back Propagation (BP) neural network to estimate the particle volume based on the two-Dimensional (2D) image information. To achieve the better network efficiency and structure simplicity, Principal Component Analysis (PCA) is adopted to reduce the dimensions of network inputs To overcome the shortcomings of generic BP network for being slow to converge and vulnerable to being trapped in local minimum, Levenberg-Marquardt (LM) algorithm is applied to achieve a higher speed and a lower error rate. The real particle data is utilized in training and testing the presented network. The experimental result suggests that the proposed neural network is capable of estimating aggregate volume with satisfactory precision and superior to the generic BP network in terms of perforxnance capacity.
文摘The method of determination of elastic moduli of the geological section rocks had been developed in real conditions. The method is based on application of non-classically linearized theory of elastic waves' propagation in the deformable media and utilization of neural networks when creating the geoseismic model. It is proposed to forecast the thin-layer model of medium by velocities of the shear waves on the base of seismic inversion of 2D profile by neural networks and geophysical well logging data. The method had been tested on materials of geophysical well logging data and 2D seismic profile related to one of the structures in the South-Caspian depression. The specific results for Poisson coefficient and elastic moduli of the third order had been obtained. The mentioned method can also be applied to forecast of other physical-mechanical properties of the medium.
文摘Energy efficiency in industrial systems remains a critical challenge,with traditional data-driven models often limited by model accuracy and data availability.Incorporation of physical laws governing energy systems can improve performance and physical consistency,but the model often struggles with the calculation of loss and ignores dynamic interplays between sub-systems,which can result in oversimplification and a lack of practical applicability.Therefore,this study investigated a theoretical framework for developing a law of conservation-guided neural network aimed at enhancing energy efficiency prediction in industrial systems.The framework integrates physical principles directly into floating nodes constructed using a long short-term memory architecture to help the model formulate the relationship between process variables,while gradient aggregation increases liquidity and interpretability.Through evaluation of two large-scale case studies—vinyl chloride monomer and detergent powder production—the proposed model produced substantial improvements in prediction accuracy and model reliability,with a test prediction improvement of 12.2%and 5.87%over published methods.Compared to network architecture modification approaches,the proposed model provided higher reliability and reproducibility in energy efficiency predictions.Moreover,the model successfully identified energy inefficiencies,resulting in a 4.21%reduction in energy consumption and a corresponding 377.35 tons of carbon emissions reduction.