BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes tha...BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes that may relate to NSSI through distinct psychological mechanisms.However,how these subtypes interact with specific NSSI behaviors remains unclear.AIM To examine associations between rumination subtypes and specific NSSI behaviors in adolescents.METHODS We conducted a cross-sectional study with 305 hospitalized adolescents diagnosed with depressive disorders.The subjects ranged from 12-18 years in age.Rumi-nation subtypes were assessed using the Ruminative Response Scale,and 12 NSSI behaviors were evaluated using a validated questionnaire.Network analysis was applied to explore symptom-level associations and identify central symptoms.RESULTS The network analysis revealed close connections between rumination subtypes and NSSI behaviors.Brooding was linked to behaviors such as hitting objects and burning.Scratching emerged as the most influential NSSI symptom.Symptomfocused rumination served as a key bridge connecting rumination and NSSI.CONCLUSION Symptom-focused rumination and scratching were identified as potential intervention targets.These findings highlight the psychological significance of specific cognitive-behavioral links in adolescent depression and suggest directions for tailored prevention and treatment.However,the cross-sectional,single-site design limits causal inference and generalizability.Future longitudinal and multi-center studies are needed to confirm causal pathways and verify the generalizability of the findings to broader adolescent populations.展开更多
Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY o...Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses.展开更多
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ...This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.展开更多
随着智能出行的推广,车载自组织网络(vehicular ad hoc network,VANET)在数据采集上应用得到越来越多的关注.然而,由于车辆的高速移动和轨迹难以预测,传统的基于位置的贪婪转发策略难以适应于高动态VANET下数据传递的需求.为解决这一问...随着智能出行的推广,车载自组织网络(vehicular ad hoc network,VANET)在数据采集上应用得到越来越多的关注.然而,由于车辆的高速移动和轨迹难以预测,传统的基于位置的贪婪转发策略难以适应于高动态VANET下数据传递的需求.为解决这一问题,提出一种历史交通数据驱动的VANET智能路由算法.首先,通过离线学习方法基于网络的历史交通流信息,获取用于最优路径选择的转发表;其次,在路径上,利用基于Markov预测的在线V2V传输机制,通过考虑车辆的运动状态等因素选择可靠的下一中继车辆.最后,与3种路由算法进行了对比,实验结果表明,该算法在数据包投递率、平均端到端时延、网络收益率、平均成功发包开销和在线计算时间复杂度这5个性能上均表现优越.展开更多
Currently, there is a growing belief that putting an IEEE 802.11-like radio into road vehicles can help the drivers to travel more safely. Message dissemination protocols are primordial for safety vehicular applicatio...Currently, there is a growing belief that putting an IEEE 802.11-like radio into road vehicles can help the drivers to travel more safely. Message dissemination protocols are primordial for safety vehicular applications. There are two types of safety messages which may be exchanged between vehicles: alarm and beacon. In this paper we investigate the feasibility of deploying safety applications based on beacon message dissemination through extensive simulation study and pay special attention to the safety requirements. Vehicles are supposed to issue these messages periodically to announce to other vehicles their current situation and use received messages for preventing possible unsafe situations. We evaluate the performance of a single-hop dissemination protocol while taking into account the quality of service (QoS) metrics like delivery rate and delay. We realize that reliability is the main concern in beacon message dissemination. Thus, a new metric named effective range is defined which gives us more accurate facility for evaluating QoS in safety applications specifically. Then, in order to improve the performance, the effects of three parameters including vehicle's transmission range, message transmission's interval time and message payload size are studied. Due to special characteristics of the safety applications, we model the relationship between communication-level QoS and application-level QoS and evaluate them for different classes of safety applications. As a conclusion, the current technology of IEEE 802.11 MAC layer has still some challenges for automatic safety applications but it can provide acceptable QoS to driver assistance safety applications.展开更多
As Vehicle Ad Hoc Networks (VANETs) is part of the applications of the Internet of Things (IoT), and Vehicles in VANETs periodically broadcast the beacon message for status advertisement to provide public safety, the ...As Vehicle Ad Hoc Networks (VANETs) is part of the applications of the Internet of Things (IoT), and Vehicles in VANETs periodically broadcast the beacon message for status advertisement to provide public safety, the impacts of the network parameters on the reliability of broadcast messages are investigated and discussed; meanwhile, a cross-layer safety-critical broadcast service architecture is proposed to obtain an optimized set of packet loss rate and delay based on the Neural Networks (NN) and Back Propagation (BP) algorithm to dynamically adjust the transmission rate-power pairs. Simulation results illustrate that the proposed mechanism can effectively improve the reliability performance while maintaining the fairness among vehicles.展开更多
There is a significant increase in the rates of vehicle accidents in countries around the world and also the casualties involved ever year. New technologies have been explored relating to the Vehicular Ad Hoc Network ...There is a significant increase in the rates of vehicle accidents in countries around the world and also the casualties involved ever year. New technologies have been explored relating to the Vehicular Ad Hoc Network (VANET) due to the increase in vehicular traffic/congestions around us. Vehicular communication is very important as technology has evolved. The research of VANET and development of proposed systems and implementation would increase safety among road users and improve the comfort for the corresponding passengers, drivers and also other road users, and a great improvement in the traffic efficiency would be achieved. This research paper investigates the current and existing security issues associated with the VANET and exposes any slack amongst them in order to lighten possible problem domains in this field.展开更多
Vehicular Ad-hoc Networks(VANETs)make it easy to transfer information between vehicles,and this feature is utilized to enable collaborative decision-making between vehicles to enhance the safety,economy,and entertainm...Vehicular Ad-hoc Networks(VANETs)make it easy to transfer information between vehicles,and this feature is utilized to enable collaborative decision-making between vehicles to enhance the safety,economy,and entertainment of vehicle operation.The high mobility of vehicles leads to a time-varying topology between vehicles,which makes inter-vehicle information transfer challenging in terms of delay control and ensuring the stability of collaborative decision-making among vehicles.The clustering algorithm is a method aimed at improving the efficiency of VANET communication.Currently,most of the research based on this method focuses on maintaining the stability of vehicle clustering,and few methods focus on the information interaction and collaborative decisionmaking of vehicles in the region.In this context,this paper proposes a networking method for intra-regional vehicle information interaction,through an efficient information transmission mechanism,vehicles can quickly obtain the required information and make more accurate decisions.Firstly,this networking method utilizes DBSCAN and the proposed vehicle scoring model to form clusters,ensuring the stability and adaptability of clusters;secondly,in the process of interacting with the information,the cosine similarity is utilized to check the similarity of the information to eliminate the highly similar information,effectively reducing redundant information;and lastly,in the case of a consensus reached by the cluster,the frequency of broadcasting of information between vehicles is reduced as a way to minimize the waste of communication resources.The proposed method is simulated based on Python and Sumo platforms,and several metrics such as cluster clustering situation,information volume,and state change rate are analyzed.The results show that the method maintains better cluster stability with a 60%and 92%reduction in information overhead compared to the FVC and HCAR algorithms,respectively.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
In this paper, we introduce a new combined priority and admission control mechanism applying in the VCN (Vehicular Communication Network) which is designed with an integration of the Vehicular Ad-hoc Networks (VAN...In this paper, we introduce a new combined priority and admission control mechanism applying in the VCN (Vehicular Communication Network) which is designed with an integration of the Vehicular Ad-hoc Networks (VANETs) based on standard IEEE 802.11 p and IEEE 802.11 s WMNs (Wireless Mesh Networks). Simulation experiments are intensively investigated to evaluate the novel combined priority and admission control mechanism to assure quality of the I2V (Infrastructure to Vehicle) emergency services occurred during the time video flows are being delivered between content servers and cars. The simulation results show effectiveness of proposed priority and admission control schemes in term of the minimized end-to-end delay as well as the increase of throughput and PDR (Packet Delivery Ratio) of the emergency data flow.展开更多
As Vehicular ad hoc networks (VANETs) become more sophisticated, the importance of integrating data protection and cybersecurity is increasingly evident. This paper offers a comprehensive investigation into the challe...As Vehicular ad hoc networks (VANETs) become more sophisticated, the importance of integrating data protection and cybersecurity is increasingly evident. This paper offers a comprehensive investigation into the challenges and solutions associated with the privacy implications within VANETs, rooted in an intricate landscape of cross-jurisdictional data protection regulations. Our examination underscores the unique nature of VANETs, which, unlike other ad-hoc networks, demand heightened security and privacy considerations due to their exposure to sensitive data such as vehicle identifiers, routes, and more. Through a rigorous exploration of pseudonymization schemes, with a notable emphasis on the Density-based Location Privacy (DLP) method, we elucidate the potential to mitigate and sometimes sidestep the heavy compliance burdens associated with data protection laws. Furthermore, this paper illuminates the cybersecurity vulnerabilities inherent to VANETs, proposing robust countermeasures, including secure data transmission protocols. In synthesizing our findings, we advocate for the proactive adoption of protective mechanisms to facilitate the broader acceptance of VANET technology while concurrently addressing regulatory and cybersecurity hurdles.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us...Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.展开更多
The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle ap...The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications.However,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles.Despite recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a concern.In this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is proposed.The Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as edges.Secondly,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)algorithm.Subsequently,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading inference.Finally,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
基金Supported by Key Research and Development Program of Shaanxi Province,China,No.2024SF-YBXM-078.
文摘BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes that may relate to NSSI through distinct psychological mechanisms.However,how these subtypes interact with specific NSSI behaviors remains unclear.AIM To examine associations between rumination subtypes and specific NSSI behaviors in adolescents.METHODS We conducted a cross-sectional study with 305 hospitalized adolescents diagnosed with depressive disorders.The subjects ranged from 12-18 years in age.Rumi-nation subtypes were assessed using the Ruminative Response Scale,and 12 NSSI behaviors were evaluated using a validated questionnaire.Network analysis was applied to explore symptom-level associations and identify central symptoms.RESULTS The network analysis revealed close connections between rumination subtypes and NSSI behaviors.Brooding was linked to behaviors such as hitting objects and burning.Scratching emerged as the most influential NSSI symptom.Symptomfocused rumination served as a key bridge connecting rumination and NSSI.CONCLUSION Symptom-focused rumination and scratching were identified as potential intervention targets.These findings highlight the psychological significance of specific cognitive-behavioral links in adolescent depression and suggest directions for tailored prevention and treatment.However,the cross-sectional,single-site design limits causal inference and generalizability.Future longitudinal and multi-center studies are needed to confirm causal pathways and verify the generalizability of the findings to broader adolescent populations.
基金supported by grants from the National Natural Science Foundation of China(82004252)the Project of Administration of Traditional Chinese Medicine of Guangdong Province(202405112017596500)the Basic and Applied Basic Research Foundation of Guangzhou Municipal Science and Technology Bureau(202102020533).
文摘Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses.
基金supported by Istanbul Technical University(Project No.45698)supported through the“Young Researchers’Career Development Project-training of doctoral students”of the Croatian Science Foundation.
文摘This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.
文摘随着智能出行的推广,车载自组织网络(vehicular ad hoc network,VANET)在数据采集上应用得到越来越多的关注.然而,由于车辆的高速移动和轨迹难以预测,传统的基于位置的贪婪转发策略难以适应于高动态VANET下数据传递的需求.为解决这一问题,提出一种历史交通数据驱动的VANET智能路由算法.首先,通过离线学习方法基于网络的历史交通流信息,获取用于最优路径选择的转发表;其次,在路径上,利用基于Markov预测的在线V2V传输机制,通过考虑车辆的运动状态等因素选择可靠的下一中继车辆.最后,与3种路由算法进行了对比,实验结果表明,该算法在数据包投递率、平均端到端时延、网络收益率、平均成功发包开销和在线计算时间复杂度这5个性能上均表现优越.
基金the Iran Telecommunication Research Center (ITRC)
文摘Currently, there is a growing belief that putting an IEEE 802.11-like radio into road vehicles can help the drivers to travel more safely. Message dissemination protocols are primordial for safety vehicular applications. There are two types of safety messages which may be exchanged between vehicles: alarm and beacon. In this paper we investigate the feasibility of deploying safety applications based on beacon message dissemination through extensive simulation study and pay special attention to the safety requirements. Vehicles are supposed to issue these messages periodically to announce to other vehicles their current situation and use received messages for preventing possible unsafe situations. We evaluate the performance of a single-hop dissemination protocol while taking into account the quality of service (QoS) metrics like delivery rate and delay. We realize that reliability is the main concern in beacon message dissemination. Thus, a new metric named effective range is defined which gives us more accurate facility for evaluating QoS in safety applications specifically. Then, in order to improve the performance, the effects of three parameters including vehicle's transmission range, message transmission's interval time and message payload size are studied. Due to special characteristics of the safety applications, we model the relationship between communication-level QoS and application-level QoS and evaluate them for different classes of safety applications. As a conclusion, the current technology of IEEE 802.11 MAC layer has still some challenges for automatic safety applications but it can provide acceptable QoS to driver assistance safety applications.
基金supported by the 111 Project under Grant No.B08004the major project of Ministry of Industry and Information Technology of the People's Republic of China under Grant No.2010ZX03002-006China Fundamental Research Funds for the Central Universities
文摘As Vehicle Ad Hoc Networks (VANETs) is part of the applications of the Internet of Things (IoT), and Vehicles in VANETs periodically broadcast the beacon message for status advertisement to provide public safety, the impacts of the network parameters on the reliability of broadcast messages are investigated and discussed; meanwhile, a cross-layer safety-critical broadcast service architecture is proposed to obtain an optimized set of packet loss rate and delay based on the Neural Networks (NN) and Back Propagation (BP) algorithm to dynamically adjust the transmission rate-power pairs. Simulation results illustrate that the proposed mechanism can effectively improve the reliability performance while maintaining the fairness among vehicles.
文摘There is a significant increase in the rates of vehicle accidents in countries around the world and also the casualties involved ever year. New technologies have been explored relating to the Vehicular Ad Hoc Network (VANET) due to the increase in vehicular traffic/congestions around us. Vehicular communication is very important as technology has evolved. The research of VANET and development of proposed systems and implementation would increase safety among road users and improve the comfort for the corresponding passengers, drivers and also other road users, and a great improvement in the traffic efficiency would be achieved. This research paper investigates the current and existing security issues associated with the VANET and exposes any slack amongst them in order to lighten possible problem domains in this field.
基金the National Natural Science Foundation of China(NSFC)under Grant No.52267003.
文摘Vehicular Ad-hoc Networks(VANETs)make it easy to transfer information between vehicles,and this feature is utilized to enable collaborative decision-making between vehicles to enhance the safety,economy,and entertainment of vehicle operation.The high mobility of vehicles leads to a time-varying topology between vehicles,which makes inter-vehicle information transfer challenging in terms of delay control and ensuring the stability of collaborative decision-making among vehicles.The clustering algorithm is a method aimed at improving the efficiency of VANET communication.Currently,most of the research based on this method focuses on maintaining the stability of vehicle clustering,and few methods focus on the information interaction and collaborative decisionmaking of vehicles in the region.In this context,this paper proposes a networking method for intra-regional vehicle information interaction,through an efficient information transmission mechanism,vehicles can quickly obtain the required information and make more accurate decisions.Firstly,this networking method utilizes DBSCAN and the proposed vehicle scoring model to form clusters,ensuring the stability and adaptability of clusters;secondly,in the process of interacting with the information,the cosine similarity is utilized to check the similarity of the information to eliminate the highly similar information,effectively reducing redundant information;and lastly,in the case of a consensus reached by the cluster,the frequency of broadcasting of information between vehicles is reduced as a way to minimize the waste of communication resources.The proposed method is simulated based on Python and Sumo platforms,and several metrics such as cluster clustering situation,information volume,and state change rate are analyzed.The results show that the method maintains better cluster stability with a 60%and 92%reduction in information overhead compared to the FVC and HCAR algorithms,respectively.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
文摘In this paper, we introduce a new combined priority and admission control mechanism applying in the VCN (Vehicular Communication Network) which is designed with an integration of the Vehicular Ad-hoc Networks (VANETs) based on standard IEEE 802.11 p and IEEE 802.11 s WMNs (Wireless Mesh Networks). Simulation experiments are intensively investigated to evaluate the novel combined priority and admission control mechanism to assure quality of the I2V (Infrastructure to Vehicle) emergency services occurred during the time video flows are being delivered between content servers and cars. The simulation results show effectiveness of proposed priority and admission control schemes in term of the minimized end-to-end delay as well as the increase of throughput and PDR (Packet Delivery Ratio) of the emergency data flow.
文摘As Vehicular ad hoc networks (VANETs) become more sophisticated, the importance of integrating data protection and cybersecurity is increasingly evident. This paper offers a comprehensive investigation into the challenges and solutions associated with the privacy implications within VANETs, rooted in an intricate landscape of cross-jurisdictional data protection regulations. Our examination underscores the unique nature of VANETs, which, unlike other ad-hoc networks, demand heightened security and privacy considerations due to their exposure to sensitive data such as vehicle identifiers, routes, and more. Through a rigorous exploration of pseudonymization schemes, with a notable emphasis on the Density-based Location Privacy (DLP) method, we elucidate the potential to mitigate and sometimes sidestep the heavy compliance burdens associated with data protection laws. Furthermore, this paper illuminates the cybersecurity vulnerabilities inherent to VANETs, proposing robust countermeasures, including secure data transmission protocols. In synthesizing our findings, we advocate for the proactive adoption of protective mechanisms to facilitate the broader acceptance of VANET technology while concurrently addressing regulatory and cybersecurity hurdles.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
文摘Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency.
文摘The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications.However,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles.Despite recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a concern.In this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is proposed.The Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as edges.Secondly,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)algorithm.Subsequently,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading inference.Finally,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.