期刊文献+
共找到541,560篇文章
< 1 2 250 >
每页显示 20 50 100
Decreased inter-and intra-network connectivity after group cognitive behavioral therapy in patients with unmedicated obsessivecompulsive disorder
1
作者 Zong-Feng Zhang Yan He +1 位作者 Yu-Qiu Su Ji-Meng Liu 《World Journal of Psychiatry》 2025年第8期332-344,共13页
BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes i... BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes in network functional connectivity(FC)in patients with OCD with GCBT remain unclear.AIM To investigate inter-and intra-network resting-state FC(rs-FC)abnormalities before and after GCBT in unmedicated patients with OCD and validate the efficacy of GCBT.METHODS Overall,33 individuals with OCD and 26 healthy controls underwent resting-state functional magnetic resonance imaging.The patients were rescanned 12 weeks after GCBT.Four cognition-related networks-default mode network(DMN),dorsal attention network(DAN),salience network(SAN),and frontoparietal network(FPN)-were selected to examine FC abnormalities within and between OCD networks before and after GCBT.Neuropsychological assessments including memory,executive function,speech,attention,and visuospatial ability were reassessed following GCBT.Pearson’s correlations were used to analyze the relationship between aberrant FC in cognition-related networks and altered neuropsychological assessments in patients.RESULTS Rs-FC within the DMN and DAN decreased significantly.Additionally,rs-FC between the DMN-DAN,DMNFPN,DMN-SAN,and DAN-SAN also decreased.Significant improvements were observed in cognitive functions,such as memory,executive function,attention,and visuospatial ability.Furthermore,reduced rs-FC within the DMN correlated with visuospatial ability and executive function;DAN positively correlated with Shape Trails Test(STT)-A test elapsed time;DMN-DAN negatively correlated with Rey-Osterrieth Complex Figure(Rey-O)mimicry time and the three elapsed times of the tower of Hanoi;DMN-SAN negatively correlated with Rey-O imitation time and positively correlated with STT-A test elapsed time;and DMN-FPN negatively correlated with Auditory Word Learning Test N1 and N4 scores.CONCLUSION Decreased rs-FC within the DMN and DAN,which correlated with executive function post-treatment,has potential as a neuroimaging marker to predict treatment response to GCBT in patients with OCD. 展开更多
关键词 Cognitive networks Default mode network Dorsal attention network Frontoparietal network Group cognitive behavioral therapy Obsessive-compulsive disorder Resting-state functional connectivity Salience network
暂未订购
Call for Papers─Feature Topic Vol.23,No.1,2026 Space-Terrestrial Integrated 6G Network:Architecture,Networking,and Transmission Technologies
2
《China Communications》 2025年第6期F0003-F0003,共1页
With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of hig... With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of high, medium, and low Earth orbit satellite networks with terrestrial networks has become a critical direction for future communication technologies. The objective is to develop a space-terrestrial integrated 6G network that ensures ubiquitous connectivity and seamless services, facilitating intelligent interconnection and collaborative symbiosis among humans, machines, and objects. This integration has become a central focus of global technological innovation. 展开更多
关键词 communication technologiesthe space terrestrial integrated G network g network satellite constellations terrestrial networks artificial intelligence ai intelligent int satellite networks
在线阅读 下载PDF
Space Network Emulation System Based on a User-Space Network Stack
3
作者 LEI Jianzhe ZHAO Kanglian +1 位作者 HOU Dongxu ZHOU Fenlin 《ZTE Communications》 2025年第2期11-19,共9页
This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development ... This paper presents a space network emulation system based on a user-space network stack named Nos to solve space networks'unique architecture and routing issues and kernel stacks'inefficiency and development complexity.Our low Earth orbit satellite scenario emulation verifies the dynamic routing function of the protocol stack.The proposed system uses technologies like Open vSwitch(OVS)and traffic control(TC)to emulate the space network's highly dynamic topology and time-varying link characteristics.The emulation results demonstrate the system's high reliability,and the user-space network stack reduces development complexity and debugging difficulty,providing convenience for the development of space network protocols and network functions. 展开更多
关键词 network emulation space network user-space network stack network function virtualization
在线阅读 下载PDF
Multi-Stage-Based Siamese Neural Network for Seal Image Recognition
4
作者 Jianfeng Lu Xiangye Huang +3 位作者 Caijin Li Renlin Xin Shanqing Zhang Mahmoud Emam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期405-423,共19页
Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited... Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting.Stamped seal inspection is commonly audited manually to ensure document authenticity.However,manual assessment of seal images is tedious and laborintensive due to human errors,inconsistent placement,and completeness of the seal.Traditional image recognition systems are inadequate enough to identify seal types accurately,necessitating a neural network-based method for seal image recognition.However,neural network-based classification algorithms,such as Residual Networks(ResNet)andVisualGeometryGroup with 16 layers(VGG16)yield suboptimal recognition rates on stamp datasets.Additionally,the fixed training data categories make handling new categories to be a challenging task.This paper proposes amulti-stage seal recognition algorithmbased on Siamese network to overcome these limitations.Firstly,the seal image is pre-processed by applying an image rotation correction module based on Histogram of Oriented Gradients(HOG).Secondly,the similarity between input seal image pairs is measured by utilizing a similarity comparison module based on the Siamese network.Finally,we compare the results with the pre-stored standard seal template images in the database to obtain the seal type.To evaluate the performance of the proposed method,we further create a new seal image dataset that contains two subsets with 210,000 valid labeled pairs in total.The proposed work has a practical significance in industries where automatic seal authentication is essential as in legal,financial,and governmental sectors,where automatic seal recognition can enhance document security and streamline validation processes.Furthermore,the experimental results show that the proposed multi-stage method for seal image recognition outperforms state-of-the-art methods on the two established datasets. 展开更多
关键词 Seal recognition seal authentication document tampering siamese network spatial transformer network similarity comparison network
在线阅读 下载PDF
Advancing network pharmacology with artificial intelligence:the next paradigm in traditional Chinese medicine
5
作者 Xin Shao Yu Chen +4 位作者 Jinlu Zhang Xuting Zhang Yizheng Dai Xin Peng Xiaohui Fan 《Chinese Journal of Natural Medicines》 2025年第11期1358-1376,共19页
Network pharmacology has gained widespread application in drug discovery,particularly in traditional Chinese medicine(TCM)research,which is characterized by its“multi-component,multi-target,and multi-pathway”nature.... Network pharmacology has gained widespread application in drug discovery,particularly in traditional Chinese medicine(TCM)research,which is characterized by its“multi-component,multi-target,and multi-pathway”nature.Through the integration of network biology,TCM network pharmacology enables systematic evaluation of therapeutic efficacy and detailed elucidation of action mechanisms,establishing a novel research paradigm for TCM modernization.The rapid advancement of machine learning,particularly revolutionary deep learning methods,has substantially enhanced artificial intelligence(AI)technology,offering significant potential to advance TCM network pharmacology research.This paper describes the methodology of TCM network pharmacology,encompassing ingredient identification,network construction,network analysis,and experimental validation.Furthermore,it summarizes key strategies for constructing various networks and analyzing constructed networks using AI methods.Finally,it addresses challenges and future directions regarding cell-cell communication(CCC)-based network construction,analysis,and validation,providing valuable insights for TCM network pharmacology. 展开更多
关键词 Traditional Chinese medicine network pharmacology Artificial intelligence Efficacy evaluation Mechanism elucidation network construction network analysis
原文传递
Application and Prospects of SDN Technology in Modern Network Management
6
作者 Aoyu Li Yingjie Yang 《Journal of Electronic Research and Application》 2025年第5期7-11,共5页
With the rapid development of information technology,the scale of the network is expanding,and the complexity is increasing day by day.The traditional network management is facing great challenges.The emergence of sof... With the rapid development of information technology,the scale of the network is expanding,and the complexity is increasing day by day.The traditional network management is facing great challenges.The emergence of software-defined network(SDN)technology has brought revolutionary changes to modern network management.This paper aims to discuss the application and prospects of SDN technology in modern network management.Firstly,the basic principle and architecture of SDN are introduced,including the separation of control plane and data plane,centralized control and open programmable interface.Then,it analyzes the advantages of SDN technology in network management,such as simplifying network configuration,improving network flexibility,optimizing network resource utilization,and realizing fast fault recovery.The application examples of SDN in data center networks and WAN optimization management are analyzed.This paper also discusses the development status and trend of SDN in enterprise networks,including the integration of technologies such as cloud computing,big data,and artificial intelligence,the construction of an intelligent and automated network management platform,the improvement of network management efficiency and quality,and the openness and interoperability of network equipment.Finally,the advantages and challenges of SDN technology are summarized,and its future development direction is provided. 展开更多
关键词 Software-defined network network management Data centers Wide area network Cloud computing
在线阅读 下载PDF
Hemispheric asymmetries and network dysfunctions in adolescent depression:A neuroimaging study using resting-state functional magnetic resonance imaging
7
作者 Ying Xiong Ren-Qiang Yu +4 位作者 Xing-Yu Wang Shun-Si Liang Jie Ran Xiao Li Yi-Zhi Xu 《World Journal of Psychiatry》 2025年第2期100-108,共9页
BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological s... BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological substrates underlying depression,the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration.AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging(rs-fMRI).METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years.Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks,including the visual,default mode network(DMN),dorsal attention,salience,somatomotor,and frontoparietal control networks.RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression.The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network,which contrasted the diminished activity in the right hemisphere.The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere,implicating disrupted self-referential and emotional processing mechanisms.Additionally,an overactive right dorsal attention network and a hypoactive salience network were identified,underscoring significant abnormalities in attentional and emotional regulation in adolescent depression.CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression,underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression.The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression,supporting the development of targeted therapeutic strategies. 展开更多
关键词 Adolescent depression Brain network connectivity Neuroimaging biomarkers Functional magnetic resonance imaging Default mode network Salience network Hemispheric asymmetry
暂未订购
The Fundamental Construction and Social Development of China’s Network Society
8
作者 Xie Jungui 《Contemporary Social Sciences》 2025年第5期122-139,共18页
The idea of a network society was introduced by Western sociologists at the end of the 20th century after in-depth research was conducted from perspectives such as informationalism.Influenced by these developments,the... The idea of a network society was introduced by Western sociologists at the end of the 20th century after in-depth research was conducted from perspectives such as informationalism.Influenced by these developments,the concept of constructing a network society also emerged in China.Over the past 30 years,China has made significant progress and achievements in constructing a network society,both in terms of its fundamental construction and social development.It is important that these advancements be summarized and reviewed.China’s network society construction can be divided into two relatively independent yet interconnected components,based on their focal points:its foundational infrastructure and its social development.These two components of China’s network society are managed by different departments.China has integrated the fundamental construction of its network society with the social development of its network society,thereby achieving unified planning,collaborative advancement,and coordinated development.This approach aims to harmonize two aspects:building China’s cyberspace strength and contributing to Chinese informatization,thereby advancing Chinese modernization. 展开更多
关键词 network society information society INFRASTRUCTURE social development network society construction building China’s cyberspace strength network society planning
在线阅读 下载PDF
Progressive Layered Extraction Network Based on Correlation Sharing for Multi-target Prediction of Soil Nutrients
9
作者 Tielong SU Xuesong TIAN Zhengguang CHEN 《Agricultural Biotechnology》 2025年第5期34-37,41,共5页
With breakthroughs in data processing and pattern recognition through deep learning technologies,the use of advanced algorithmic models for analyzing and interpreting soil spectral information has provided an efficien... With breakthroughs in data processing and pattern recognition through deep learning technologies,the use of advanced algorithmic models for analyzing and interpreting soil spectral information has provided an efficient and economical method for soil quality assessment.However,traditional single-output networks exhibit limitations in the prediction process,particularly in their inability to fully utilize the correlations among various elements.As a result,single-output networks tend to be optimized for a single task,neglecting the interrelationships among different soil elements,which limits prediction accuracy and model generalizability.To overcome this limitation,in this study,a multi-task learning architecture with a progressive extraction network was implemented for the simultaneous prediction of multiple indicators in soil,including nitrogen(N),organic carbon(OC),calcium carbonate(CaCO 3),cation exchange capacity(CEC),and pH.Furthermore,while incorporating the Pearson correlation coefficient,convolutional neural networks,long short-term memory networks and attention mechanisms were combined to extract local abstract features from the original spectra,thereby further improving the model.This architecture is referred to as the Relevance-sharing Progressive Layered Extraction Network.The model employs an adaptive joint loss optimization method to update the weights of individual task losses in the multi-task learning training process. 展开更多
关键词 Near-infrared spectroscopy Progressive extraction network Multi-task learning Convolutional neural network Long short-term memory network Attention mechanism
在线阅读 下载PDF
SFFSlib:A Python library for optimizing attribute layouts from micro to macro scales in network visualization
10
作者 Ke-Chao Zhang Sheng-Yue Jiang Jing Xiao 《Chinese Physics B》 2025年第5期124-138,共15页
Complex network modeling characterizes system relationships and structures,while network visualization enables intuitive analysis and interpretation of these patterns.However,existing network visualization tools exhib... Complex network modeling characterizes system relationships and structures,while network visualization enables intuitive analysis and interpretation of these patterns.However,existing network visualization tools exhibit significant limitations in representing attributes of complex networks at various scales,particularly failing to provide advanced visual representations of specific nodes and edges,community affiliation attribution,and global scalability.These limitations substantially impede the intuitive analysis and interpretation of complex network patterns through visual representation.To address these limitations,we propose SFFSlib,a multi-scale network visualization framework incorporating novel methods to highlight attribute representation in diverse network scenarios and optimize structural feature visualization.Notably,we have enhanced the visualization of pivotal details at different scales across diverse network scenarios.The visualization algorithms proposed within SFFSlib were applied to real-world datasets and benchmarked against conventional layout algorithms.The experimental results reveal that SFFSlib significantly enhances the clarity of visualizations across different scales,offering a practical solution for the advancement of network attribute representation and the overall enhancement of visualization quality. 展开更多
关键词 complex network visualization layout algorithm signed network fuzzy community structure social bot network
原文传递
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
11
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images
12
作者 Anandhavalli Muniasamy Ashwag Alasmari 《Computer Modeling in Engineering & Sciences》 2025年第4期569-592,共24页
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has signifi... The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation. 展开更多
关键词 Bayesian neural networks(BNNs) convolution neural networks(CNN) Bayesian convolution neural networks(BCNNs) predictive modeling precision medicine uncertainty quantification
在线阅读 下载PDF
Witnessing the distribution of sources in quantum networks via hierarchical nonlocality
13
作者 Shu-Yuan Yang Jin-Chuan Hou Kan He 《Chinese Physics B》 2025年第6期291-300,共10页
Quantum networks with multiple sources always face performance challenges due to the vulnerability of quantum systems. Thus, it is highly desirable to have the capability to continuously monitor and determine the exac... Quantum networks with multiple sources always face performance challenges due to the vulnerability of quantum systems. Thus, it is highly desirable to have the capability to continuously monitor and determine the exact number of quantum sources versus classical sources present within the network. Hierarchical network nonlocality can reveal the relationship between network nonlocality and the number of quantum sources within the network, thus becoming a way to address the aforementioned issue. However, up to now, precise hierarchical network nonlocality inequalities have only been established for star networks, and cannot be obtained for other non-star structured networks [Phys. Rev. Lett. 128 010403(2022) and Phys. Rev. A 110 022617(2024)]. In this paper, we establish more refined criteria for hierarchical network nonlocality inequalities in arbitrary network structures. Violating such inequalities can reveal the exact number of quantum sources in the network. These results enhance the understanding of quantum source distribution in complex network topologies. 展开更多
关键词 hierarchical network nonlicality chain network arbitrary network
原文传递
Non-Terrestrial Network: Architecture, Technologies and Applications
14
作者 Gao Yuan Wu Gang +3 位作者 Hao Zhangcheng Zhao Nan Dusit Niyato Arumugam Nallanathan 《China Communications》 2025年第10期I0002-I0005,共4页
With the advent of the digital era,the field of communications is undergoing profound transformation.Among the most groundbreaking developments is the emergence of non-terrestrial networks(NTN),which represent not onl... With the advent of the digital era,the field of communications is undergoing profound transformation.Among the most groundbreaking developments is the emergence of non-terrestrial networks(NTN),which represent not only a technological leap forward but also a major trend shaping the future of global connectivity.As a layered heterogeneous network,NTN integrates multiple aerial platforms—including satellites,high-altitude platform systems(HAPS),and unmanned aerial systems(UAS)—to provide flexible and composable solutions aimed at achieving seamless worldwide communication coverage. 展开更多
关键词 unmanned aerial systems uas non terrestrial networks SATELLITES layered heterogeneous networkntn aerial platforms layered heterogeneous network high altitude platform systems unmanned aerial systems
在线阅读 下载PDF
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain 被引量:3
15
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
16
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
改进Deep Q Networks的交通信号均衡调度算法
17
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 Deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks 被引量:1
18
作者 Rui Xiong Yinghao He +2 位作者 Yue Sun Yanbo Jia Weixiang Shen 《Journal of Energy Chemistry》 2025年第5期618-627,共10页
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models... For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management. 展开更多
关键词 Lithium-ion batteries Electrode level Ageing diagnosis Physics-informed neural network Convolutional neural networks
在线阅读 下载PDF
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
19
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
Constrained Networked Predictive Control for Nonlinear Systems Using a High-Order Fully Actuated System Approach 被引量:1
20
作者 Yi Huang Guo-Ping Liu +1 位作者 Yi Yu Wenshan Hu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期478-480,共3页
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv... Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system. 展开更多
关键词 optimal control problem constrained networked predictive control strategy Performance Optimization present upper bound Nonlinear Systems NOISES Constrained networked Predictive Control High Order Fully Actuated Systems
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部