Remote sensing(RS) technologies provide robust techniques for quantifying net primary productivity(NPP) which is a key component of ecosystem production management. Applying RS, the confounding effects of carbon consu...Remote sensing(RS) technologies provide robust techniques for quantifying net primary productivity(NPP) which is a key component of ecosystem production management. Applying RS, the confounding effects of carbon consumed by livestock grazing were neglected by previous studies, which created uncertainties and underestimation of NPP for the grazed lands. The grasslands in Xinjiang were selected as a case study to improve the RS based NPP estimation. A defoliation formulation model(DFM) based on RS is developed to evaluate the extent of underestimated NPP between 1982 and 2011. The estimates were then used to examine the spatiotemporal patterns of the calculated NPP. Results show that average annual underestimated NPP was 55.74 gC·m^(-2)yr^(-1) over the time period understudied, accounting for 29.06% of the total NPP for the Xinjiang grasslands. The spatial distribution of underestimated NPP is related to both grazing intensity and time. Data for the Xinjiang grasslands show that the average annual NPP was 179.41 gC·m^(-2)yr^(-1), the annual NPP with an increasing trend was observed at a rate of 1.04 gC·m^(-2)yr^(-1) between 1982 and 2011. The spatial distribution of NPP reveals distinct variations from high to low encompassing the geolocations of the Tianshan Mountains, northern and southern Xinjiang Province and corresponding with mid-mountain meadow, typical grassland, desert grassland, alpine meadow, and saline meadow grassland types. This study contributes to improving RS-based NPP estimations for grazed land and provides a more accurate data to support the scientific management of fragile grassland ecosystems in Xinjiang.展开更多
The method to estimate NSSR (net surface shortwave radiation) from LST (land surface temperature) in regional scale is discussed. First, an elliptical model between the time series of normalized LST and NSSR was d...The method to estimate NSSR (net surface shortwave radiation) from LST (land surface temperature) in regional scale is discussed. First, an elliptical model between the time series of normalized LST and NSSR was developed using the daily evolution of LST and NSSR. Second, time series of LST and NSSR were simulated by common land model (CoLM) and were proved to be of high accuracy. On the basis of these, a non-linear least square ellipse fitting using the genetic algorithm method was used to fit the normalized LST and NSSR. Finally, LST was inverted using MODIS (moderate resolution imaging spectroradiometer) data with the split-window algorithm, and the regional NSSR was then estimated with LST and an elliptical model. The validation result shows that the derived average NSSR of 50×50 pixels of MODIS data was quite close to the observed data, and the distribution was reasonable, which indicates that the proposed method was capable of estimating NSSR on a regional scale.展开更多
Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base ...Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base in China with significant strategic importance,has undergone intensive coal mining activities that have substantially disrupted regional groundwater circulation.This study integrated data from the Gravity Recovery and Climate Experiment Satellite(GRACE)and Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS)models,combined with weighted downscaling methodology and water balance principles,to reconstruct high-resolution(0.01°)terrestrial water storage(TWS)and GWS changes in the Ordos Mining Region,China from April 2002 to December 2021.The accuracy of GWS variations were validated through pumping test measurements.Subsequently,Geodetector analysis was implemented to quantify the contributions of natural and anthropogenic factors to groundwater storage dynamics.Key findings include:1)TWS in the study area showed a fluctuating but overall decreasing trend,with a total reduction of 8901.11 mm during study period.The most significant annual decrease occurred in 2021,reaching 1696.77 mm.2)GWS exhibited an accelerated decline,with an average annual change rate of 44.35 mm/yr,totaling a decrease of 887.05 mm.The lowest annual groundwater storage level was recorded in 2020,reaching 185.69 mm.3)Precipitation(PRE)contributed the most to GWS variation(q=0.52),followed by coal mining water consumption(MWS)(q=0.41).The interaction between PRE and MWS exhibited a nonlinear enhancement effect on GWS changes(0.54).The synergistic effect of natural hydrological factors has a great influence on the change of GWS,but coal mining water consumption will continue to reduce GWS.These findings provide critical references for the management and regulation of groundwater resource in mining regions.展开更多
基金supported by the international Partnership Program of the Chinese Academy of Science(Grant No.131965KYSB20160004)the National Natural Science Foundation of China(Grant No.U1803243)+1 种基金the Network Plan of the Science and Technology Service,Chinese Academy of Sciences(STS Plan)Qinghai innovation platform construction project(2017-ZJ-Y20)
文摘Remote sensing(RS) technologies provide robust techniques for quantifying net primary productivity(NPP) which is a key component of ecosystem production management. Applying RS, the confounding effects of carbon consumed by livestock grazing were neglected by previous studies, which created uncertainties and underestimation of NPP for the grazed lands. The grasslands in Xinjiang were selected as a case study to improve the RS based NPP estimation. A defoliation formulation model(DFM) based on RS is developed to evaluate the extent of underestimated NPP between 1982 and 2011. The estimates were then used to examine the spatiotemporal patterns of the calculated NPP. Results show that average annual underestimated NPP was 55.74 gC·m^(-2)yr^(-1) over the time period understudied, accounting for 29.06% of the total NPP for the Xinjiang grasslands. The spatial distribution of underestimated NPP is related to both grazing intensity and time. Data for the Xinjiang grasslands show that the average annual NPP was 179.41 gC·m^(-2)yr^(-1), the annual NPP with an increasing trend was observed at a rate of 1.04 gC·m^(-2)yr^(-1) between 1982 and 2011. The spatial distribution of NPP reveals distinct variations from high to low encompassing the geolocations of the Tianshan Mountains, northern and southern Xinjiang Province and corresponding with mid-mountain meadow, typical grassland, desert grassland, alpine meadow, and saline meadow grassland types. This study contributes to improving RS-based NPP estimations for grazed land and provides a more accurate data to support the scientific management of fragile grassland ecosystems in Xinjiang.
基金Supported by the Knowledge Innovation Programs of Chinese Academy of Sciences (XMXX280722)China International Science and Technology Cooperation Project (0819)+1 种基金National Program on Key Basic Research Project (2010CB428800)Wong K C Education Foundation, Hong Kong
文摘The method to estimate NSSR (net surface shortwave radiation) from LST (land surface temperature) in regional scale is discussed. First, an elliptical model between the time series of normalized LST and NSSR was developed using the daily evolution of LST and NSSR. Second, time series of LST and NSSR were simulated by common land model (CoLM) and were proved to be of high accuracy. On the basis of these, a non-linear least square ellipse fitting using the genetic algorithm method was used to fit the normalized LST and NSSR. Finally, LST was inverted using MODIS (moderate resolution imaging spectroradiometer) data with the split-window algorithm, and the regional NSSR was then estimated with LST and an elliptical model. The validation result shows that the derived average NSSR of 50×50 pixels of MODIS data was quite close to the observed data, and the distribution was reasonable, which indicates that the proposed method was capable of estimating NSSR on a regional scale.
基金Under the National Key R&D Program Key Project(No.2021YFC3201201)National Natural Science Foundation of China(No.52360032)+2 种基金Basic Scientific Research Business Fee Project of Colleges And Universities Directly Under the Inner Mongolia Autonomous Region(No.JBYYWF2022001)Development Plan of Innovation Team of Colleges And Universities in Inner Mongolia Autonomous Region(No.NMGIRT2313)the Innovation Team of‘Grassland Talents’。
文摘Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base in China with significant strategic importance,has undergone intensive coal mining activities that have substantially disrupted regional groundwater circulation.This study integrated data from the Gravity Recovery and Climate Experiment Satellite(GRACE)and Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS)models,combined with weighted downscaling methodology and water balance principles,to reconstruct high-resolution(0.01°)terrestrial water storage(TWS)and GWS changes in the Ordos Mining Region,China from April 2002 to December 2021.The accuracy of GWS variations were validated through pumping test measurements.Subsequently,Geodetector analysis was implemented to quantify the contributions of natural and anthropogenic factors to groundwater storage dynamics.Key findings include:1)TWS in the study area showed a fluctuating but overall decreasing trend,with a total reduction of 8901.11 mm during study period.The most significant annual decrease occurred in 2021,reaching 1696.77 mm.2)GWS exhibited an accelerated decline,with an average annual change rate of 44.35 mm/yr,totaling a decrease of 887.05 mm.The lowest annual groundwater storage level was recorded in 2020,reaching 185.69 mm.3)Precipitation(PRE)contributed the most to GWS variation(q=0.52),followed by coal mining water consumption(MWS)(q=0.41).The interaction between PRE and MWS exhibited a nonlinear enhancement effect on GWS changes(0.54).The synergistic effect of natural hydrological factors has a great influence on the change of GWS,but coal mining water consumption will continue to reduce GWS.These findings provide critical references for the management and regulation of groundwater resource in mining regions.