Network-induced delay and jitter are key factors causing performance degradation and instability of NCSs (networked control systems). The relationships between the sampling periods of the control loops, network-induce...Network-induced delay and jitter are key factors causing performance degradation and instability of NCSs (networked control systems). The relationships between the sampling periods of the control loops, network-induced delay and jitter were studied aimed at token-type networks. A jitter-dependent optimal bandwidth scheduling algorithm for NCSs is proposed, which tries to achieve a tradeoff between bandwidth occupancy and system performance. Simulation tests proved the effectiveness of this optimal scheduling algorithm.展开更多
This paper is concerned with controller design of net- worked control systems (NCSs) with both network-induced delay and arbitrary packet dropout. By using a packet-loss-dependent Lyapunov function, sufficient condi...This paper is concerned with controller design of net- worked control systems (NCSs) with both network-induced delay and arbitrary packet dropout. By using a packet-loss-dependent Lyapunov function, sufficient conditions for state/output feedback stabilization and corresponding control laws are derived via a switched system approach. Different from the existing results, the proposed stabilizing controllers design is dependent on the packet loss occurring in the last two transmission intervals due to the network-induced delay. The cone complementary lineara- tion (CCL) methodology is used to solve the non-convex feasibility problem by formulating it into an optimization problem subject to linear matrix inequality (LMI) constraints. Numerical examples and simulations are worked out to demonstrate the effectiveness and validity of the proposed techniques.展开更多
In the study of the catalytic active center of nitrogen fixation in nitrogenase, structural models containing MoFe3S3 or MoFe3S4 cubane-like skeleton have been proposed. The syntheses of these model compounds have sin...In the study of the catalytic active center of nitrogen fixation in nitrogenase, structural models containing MoFe3S3 or MoFe3S4 cubane-like skeleton have been proposed. The syntheses of these model compounds have since attracted the attention of many chemists. Up to the present time, however, only Holm’s research group has obtained MoFe3S4 single cubane cluster compounds by multi-step cleavage reaction of Mo—Fe—S展开更多
To handle input and output time delays that commonly exist in many networked control systems(NCSs), a new robust continuous sliding mode control(CSMC) scheme is proposed for the output tracking in uncertain single inp...To handle input and output time delays that commonly exist in many networked control systems(NCSs), a new robust continuous sliding mode control(CSMC) scheme is proposed for the output tracking in uncertain single input-single-output(SISO) networked control systems. This scheme consists of three consecutive steps. First, although the network-induced delay in those systems can be effectively handled by using Pade approximation(PA), the unmatched disturbance cames out as another difficulty in the control design. Second, to actively estimate this unmatched disturbance, a generalized proportional integral observer(GPIO) technique is utilized based on only one measured state. Third, by constructing a new sliding manifold with the aid of the estimated unmatched disturbance and states, a GPIO-based CSMC is synthesized, which is employed to cope with not only matched and unmatched disturbances, but also networkinduced delays. The stability of the entire closed-loop system under the proposed GPIO-based CSMC is detailedly analyzed.The promising tracking efficiency and feasibility of the proposed control methodology are verified through simulations and experiments on Quanser's servo module for motion control under various test conditions.展开更多
基金Project supported by the National Natural Science Foundation ofChina (Nos. 60074011 and 60174009), and Youth Science and Tech-nology Foundation of Shanxi Province (No. 20051020), China
文摘Network-induced delay and jitter are key factors causing performance degradation and instability of NCSs (networked control systems). The relationships between the sampling periods of the control loops, network-induced delay and jitter were studied aimed at token-type networks. A jitter-dependent optimal bandwidth scheduling algorithm for NCSs is proposed, which tries to achieve a tradeoff between bandwidth occupancy and system performance. Simulation tests proved the effectiveness of this optimal scheduling algorithm.
基金supported by the National Natural Science Foundation of China (6093400761174059)+1 种基金the Program for New Century Excellent Talents (NCET-08-0359)the Shanghai RisingStar Tracking Program (11QH1401300)
文摘This paper is concerned with controller design of net- worked control systems (NCSs) with both network-induced delay and arbitrary packet dropout. By using a packet-loss-dependent Lyapunov function, sufficient conditions for state/output feedback stabilization and corresponding control laws are derived via a switched system approach. Different from the existing results, the proposed stabilizing controllers design is dependent on the packet loss occurring in the last two transmission intervals due to the network-induced delay. The cone complementary lineara- tion (CCL) methodology is used to solve the non-convex feasibility problem by formulating it into an optimization problem subject to linear matrix inequality (LMI) constraints. Numerical examples and simulations are worked out to demonstrate the effectiveness and validity of the proposed techniques.
文摘In the study of the catalytic active center of nitrogen fixation in nitrogenase, structural models containing MoFe3S3 or MoFe3S4 cubane-like skeleton have been proposed. The syntheses of these model compounds have since attracted the attention of many chemists. Up to the present time, however, only Holm’s research group has obtained MoFe3S4 single cubane cluster compounds by multi-step cleavage reaction of Mo—Fe—S
基金supported in part by the Australian Research Council Discovery Project(DP190101557)
文摘To handle input and output time delays that commonly exist in many networked control systems(NCSs), a new robust continuous sliding mode control(CSMC) scheme is proposed for the output tracking in uncertain single input-single-output(SISO) networked control systems. This scheme consists of three consecutive steps. First, although the network-induced delay in those systems can be effectively handled by using Pade approximation(PA), the unmatched disturbance cames out as another difficulty in the control design. Second, to actively estimate this unmatched disturbance, a generalized proportional integral observer(GPIO) technique is utilized based on only one measured state. Third, by constructing a new sliding manifold with the aid of the estimated unmatched disturbance and states, a GPIO-based CSMC is synthesized, which is employed to cope with not only matched and unmatched disturbances, but also networkinduced delays. The stability of the entire closed-loop system under the proposed GPIO-based CSMC is detailedly analyzed.The promising tracking efficiency and feasibility of the proposed control methodology are verified through simulations and experiments on Quanser's servo module for motion control under various test conditions.