期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种新的贝叶斯树分类器及其应用 被引量:2
1
作者 常晓辉 穆志纯 张坤 《计算机应用与软件》 CSCD 北大核心 2008年第5期102-104,共3页
比较了朴素贝叶斯分类器的一些改进算法,提出了新的TTree分类器,采用决策树分割实例集,在叶节点建立TAN分类器。实验分析表明,TTree算法与NBTree、TAN、Na ve-bayes相比,有较高的分类准确率。该分类器应用到电信CRM客户建模中,得到了较... 比较了朴素贝叶斯分类器的一些改进算法,提出了新的TTree分类器,采用决策树分割实例集,在叶节点建立TAN分类器。实验分析表明,TTree算法与NBTree、TAN、Na ve-bayes相比,有较高的分类准确率。该分类器应用到电信CRM客户建模中,得到了较好的分类结果。 展开更多
关键词 TTree分类器 nbtree分类器 决策树 强规则 CRM
在线阅读 下载PDF
基于WEKA平台的决策树算法比较研究 被引量:6
2
作者 杨小军 钱鲁锋 别致 《舰船电子工程》 2018年第10期34-36,97,共4页
决策树是数据挖掘领域广泛研究和应用的一种分类算法,具备计算量小、速度快、分类准确率高、分类规则易于理解等众多优点。论文选取了八个公开的UCI科研数据集,从分类准确率、建模速度、可解释性三个方面对经典的决策树算法C4.5、CART和... 决策树是数据挖掘领域广泛研究和应用的一种分类算法,具备计算量小、速度快、分类准确率高、分类规则易于理解等众多优点。论文选取了八个公开的UCI科研数据集,从分类准确率、建模速度、可解释性三个方面对经典的决策树算法C4.5、CART和NBTree进行比较,分析了三个算法各自的原理和优缺点,明确了各算法的适用情况。 展开更多
关键词 决策树算法 C4.5 CART nbtree
在线阅读 下载PDF
在逐渐缩小的空间上渐进学习朴素贝叶斯参数 被引量:2
3
作者 欧阳泽华 郭华平 范明 《计算机应用》 CSCD 北大核心 2012年第1期223-227,共5页
局部加权朴素贝叶斯(LWNB)是朴素贝叶斯(NB)的一种较好的改进,判别频率估计(DFE)可以极大地提高NB的泛化正确率。受LWNB和DFE启发,提出逐渐缩小空间(GCS)算法用来学习NB参数:对于一个测试实例,寻找包含全体训练实例的全局空间的一系列... 局部加权朴素贝叶斯(LWNB)是朴素贝叶斯(NB)的一种较好的改进,判别频率估计(DFE)可以极大地提高NB的泛化正确率。受LWNB和DFE启发,提出逐渐缩小空间(GCS)算法用来学习NB参数:对于一个测试实例,寻找包含全体训练实例的全局空间的一系列逐渐缩小的子空间。这些子空间具有两种性质:1)它们都包含测试实例;2)一个空间一定包含在任何一个比它大的空间中。在逐渐缩小的空间上使用修改的DFE(MDFE)算法渐进地学习NB的参数,然后使用NB分类测试实例。与LWNB的根本不同是:GCS使用全体训练实例学习NB并且GCS可以实现为非懒惰版本。实现了GCS的决策树版本(GCS-T)实验结果显示,与C4.5以及贝叶斯分类算法(如NaiveBayes、BaysianNet、NBTree、LWNB、隐朴素贝叶斯)相比,GCS-T具有较高的泛化正确率,并且GCS-T的分类速度明显快于LWNB。 展开更多
关键词 朴素贝叶斯 局部模型 全局模型 决策树 朴素贝叶斯树
在线阅读 下载PDF
Improving naive Bayes classifier by dividing its decision regions 被引量:3
4
作者 Zhi-yong YAN Gong-fu XU Yun-he PAN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第8期647-657,共11页
Classification can be regarded as dividing the data space into decision regions separated by decision boundaries.In this paper we analyze decision tree algorithms and the NBTree algorithm from this perspective.Thus,a ... Classification can be regarded as dividing the data space into decision regions separated by decision boundaries.In this paper we analyze decision tree algorithms and the NBTree algorithm from this perspective.Thus,a decision tree can be regarded as a classifier tree,in which each classifier on a non-root node is trained in decision regions of the classifier on the parent node.Meanwhile,the NBTree algorithm,which generates a classifier tree with the C4.5 algorithm and the naive Bayes classifier as the root and leaf classifiers respectively,can also be regarded as training naive Bayes classifiers in decision regions of the C4.5 algorithm.We propose a second division (SD) algorithm and three soft second division (SD-soft) algorithms to train classifiers in decision regions of the naive Bayes classifier.These four novel algorithms all generate two-level classifier trees with the naive Bayes classifier as root classifiers.The SD and three SD-soft algorithms can make good use of both the information contained in instances near decision boundaries,and those that may be ignored by the naive Bayes classifier.Finally,we conduct experiments on 30 data sets from the UC Irvine (UCI) repository.Experiment results show that the SD algorithm can obtain better generali-zation abilities than the NBTree and the averaged one-dependence estimators (AODE) algorithms when using the C4.5 algorithm and support vector machine (SVM) as leaf classifiers.Further experiments indicate that our three SD-soft algorithms can achieve better generalization abilities than the SD algorithm when argument values are selected appropriately. 展开更多
关键词 Naive Bayes classifier Decision region nbtree C4.5 algorithm Support vector machine (SVM)
原文传递
Fault diagnosis of silage harvester based on a modified random forest 被引量:2
5
作者 Xiuli Zhou Xiaochuan Xu +3 位作者 Junfeng Zhang Ling Wang Defu Wang Pingping Zhang 《Information Processing in Agriculture》 EI CSCD 2023年第3期301-311,共11页
The objective of this study is to investigate the effectiveness of a multi-parameter intelligent fault diagnosis method based on a modified random forest algorithm(RFNB algorithm),so as to reduce the impact of blockag... The objective of this study is to investigate the effectiveness of a multi-parameter intelligent fault diagnosis method based on a modified random forest algorithm(RFNB algorithm),so as to reduce the impact of blockage fault on the operation of a silage harvester,thus providing a reference for the intelligent control.In brief,the forward speed,cutting speed,engine speed and engine load were selected as the input variables.Then,a random forest(RF)was used to construct a naive Bayes classifier for each node of the decision tree,and finally the RFNB algorithm constituted based on the naive Bayes tree(NBTree).The results revealed that by improving the classification accuracy of a single decision tree,the fault diagnosis accuracy of the entire RF was improved.When the sample data were consistent,the accuracy of the RFNB algorithm was 97.9%,while that of the RF algorithm was only 93.27%.Besides,the performance of RFNB classifiers was significantly better than that of RF classifiers.In conclusion,the RFNB model can accurately identify the fault status of the silage harvester with its good robustness,which provides a new idea for the fault monitoring and early warning of large agricultural rotating machinery in the future. 展开更多
关键词 Random forest Silage harvester Fault diagnosis nbtree
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部