Many physical processes have nonlinear behavior which can be well represented by a polynomial NARX or NARMAX model. The identification of such models has been widely explored in literature. The majority of these appro...Many physical processes have nonlinear behavior which can be well represented by a polynomial NARX or NARMAX model. The identification of such models has been widely explored in literature. The majority of these approaches are for the open-loop identification. However, for reasons such as safety and production restrictions, open-loop identification cannot always be done. In such cases, closed-loop identification is necessary. This paper presents a two-step approach to closed-loop identification of the polynomial NARX/NARMAX systems with variable structure control (VSC). First, a genetic algorithm (GA) is used to maximize the similarity of VSC signal to white noise by tuning the switching function parameters. Second, the system is simulated again and its parameters are estimated by an algorithm of the least square (LS) family. Finally, simulation examples are given to show the validity of the proposed approach.展开更多
An approach is proposed to avoid model structure determination in system identification using NARMAX (nonlinear autoregressive moving average with exogenous inputs) model. Identification procedure is formulated as a...An approach is proposed to avoid model structure determination in system identification using NARMAX (nonlinear autoregressive moving average with exogenous inputs) model. Identification procedure is formulated as an optimization procedure of a apecial class of Hopfield network in the proposed approach. The particular structure of these Hopfield networks can avoid the local optimum problem. Training of these Hopfield network achieves model structure determination and parameter estimation. Convergence of Hopfield networks guarantees that a NARMAX model of random initial state will approach a valid identification model with accurate state parameters. Results of two simulation examples illustrate that this approach is efficient and simple.展开更多
The modeling of distillation column process is a very challenging problem because of the complex dynamic behavior.This paper investigates a Nonlinear Autoregressive Moving Average with eXogenous input(NARMAX)model,and...The modeling of distillation column process is a very challenging problem because of the complex dynamic behavior.This paper investigates a Nonlinear Autoregressive Moving Average with eXogenous input(NARMAX)model,and a Hammerstein model to approximate the evolution of the overhead temperature in a separation system.The model development and validation are studied through experiments carried out on a distillation plant of laboratory scale.Three model order selection criteria such as Aikeke’s Information Criterion(AIC),Root Mean Square Error(RMSE)and Nash–Sutcliffe Efficiency(NSE)are used to evaluate the prediction performance of the process behavior.The results illustrate that both models produce acceptable predictions but the NARMAX model outperforms the Hammerstein model.展开更多
为满足中国空气动力研究与发展中心的2.4m跨声速风洞流场品质改进的需要,有必要建立一个高效的风洞流场控制模型作为控制器设计的验证平台。由于难以建立精确的空气动力学模型,且2.4m跨声速风洞长期运行积累了大量的试验运行数据的实际...为满足中国空气动力研究与发展中心的2.4m跨声速风洞流场品质改进的需要,有必要建立一个高效的风洞流场控制模型作为控制器设计的验证平台。由于难以建立精确的空气动力学模型,且2.4m跨声速风洞长期运行积累了大量的试验运行数据的实际,数据建模成为建模方法的首选。在硬件上,建立了基于反射内存技术的流场控制仿真系统,以获取现场采集的数据。建模方法采用数据建模方式,主要是利用系统辨识理论,将整个系统看成是一个"黑箱",利用现场采集的数据来确定系统的参数和输入输出间的映射关系。采用以非线性自回归滑动平均模型(Non-linear Auto-Regressive Moving Average Model with Exogenous Inputs,NARMAX)作为风洞系统的数据模型,应用互信息法、曲线拟合法和伪最近邻点法分别确定了模型中采样间隔、时间滞后以及阶次3个参数。对比了最小二乘线性回归、BP神经网络以及最小二乘支持向量机(LS_SVM)3种方法对模型的拟合效果,确立了最小二乘支持向量机作为最终的拟合方法。为了提高仿真的精度,根据风洞运行的特点,将其整个过程划分为冲压、启动和调节3个阶段,分别建立了各个阶段的子模型。由于风洞系统是一个多输入多输出系统,并且延迟和阶次较大,采用了基于信息熵的数据压缩方法,实现了简化子模型规模的目的。最后,采用多模型融合的方法将各个阶段的子模型通过加权的方法来完成融合,从而构建起整个风洞系统的模型。稳定段总压和驻室静压分别通过所建模型得到,最后通过马赫数的计算公式得到试验段马赫数值。仿真结果表明:所建模型在运行包络线范围内的试验工况下,总压预测精度达到0.1%、马赫数预测精度基本达到0.001,达到了研究的目的。该项工作的开展较为系统地建立了暂冲式风洞的流场控制模型,建立的模型将为下一阶段基于现代控制理论的控制器设计奠定基础。展开更多
文摘Many physical processes have nonlinear behavior which can be well represented by a polynomial NARX or NARMAX model. The identification of such models has been widely explored in literature. The majority of these approaches are for the open-loop identification. However, for reasons such as safety and production restrictions, open-loop identification cannot always be done. In such cases, closed-loop identification is necessary. This paper presents a two-step approach to closed-loop identification of the polynomial NARX/NARMAX systems with variable structure control (VSC). First, a genetic algorithm (GA) is used to maximize the similarity of VSC signal to white noise by tuning the switching function parameters. Second, the system is simulated again and its parameters are estimated by an algorithm of the least square (LS) family. Finally, simulation examples are given to show the validity of the proposed approach.
文摘An approach is proposed to avoid model structure determination in system identification using NARMAX (nonlinear autoregressive moving average with exogenous inputs) model. Identification procedure is formulated as an optimization procedure of a apecial class of Hopfield network in the proposed approach. The particular structure of these Hopfield networks can avoid the local optimum problem. Training of these Hopfield network achieves model structure determination and parameter estimation. Convergence of Hopfield networks guarantees that a NARMAX model of random initial state will approach a valid identification model with accurate state parameters. Results of two simulation examples illustrate that this approach is efficient and simple.
文摘The modeling of distillation column process is a very challenging problem because of the complex dynamic behavior.This paper investigates a Nonlinear Autoregressive Moving Average with eXogenous input(NARMAX)model,and a Hammerstein model to approximate the evolution of the overhead temperature in a separation system.The model development and validation are studied through experiments carried out on a distillation plant of laboratory scale.Three model order selection criteria such as Aikeke’s Information Criterion(AIC),Root Mean Square Error(RMSE)and Nash–Sutcliffe Efficiency(NSE)are used to evaluate the prediction performance of the process behavior.The results illustrate that both models produce acceptable predictions but the NARMAX model outperforms the Hammerstein model.
文摘为满足中国空气动力研究与发展中心的2.4m跨声速风洞流场品质改进的需要,有必要建立一个高效的风洞流场控制模型作为控制器设计的验证平台。由于难以建立精确的空气动力学模型,且2.4m跨声速风洞长期运行积累了大量的试验运行数据的实际,数据建模成为建模方法的首选。在硬件上,建立了基于反射内存技术的流场控制仿真系统,以获取现场采集的数据。建模方法采用数据建模方式,主要是利用系统辨识理论,将整个系统看成是一个"黑箱",利用现场采集的数据来确定系统的参数和输入输出间的映射关系。采用以非线性自回归滑动平均模型(Non-linear Auto-Regressive Moving Average Model with Exogenous Inputs,NARMAX)作为风洞系统的数据模型,应用互信息法、曲线拟合法和伪最近邻点法分别确定了模型中采样间隔、时间滞后以及阶次3个参数。对比了最小二乘线性回归、BP神经网络以及最小二乘支持向量机(LS_SVM)3种方法对模型的拟合效果,确立了最小二乘支持向量机作为最终的拟合方法。为了提高仿真的精度,根据风洞运行的特点,将其整个过程划分为冲压、启动和调节3个阶段,分别建立了各个阶段的子模型。由于风洞系统是一个多输入多输出系统,并且延迟和阶次较大,采用了基于信息熵的数据压缩方法,实现了简化子模型规模的目的。最后,采用多模型融合的方法将各个阶段的子模型通过加权的方法来完成融合,从而构建起整个风洞系统的模型。稳定段总压和驻室静压分别通过所建模型得到,最后通过马赫数的计算公式得到试验段马赫数值。仿真结果表明:所建模型在运行包络线范围内的试验工况下,总压预测精度达到0.1%、马赫数预测精度基本达到0.001,达到了研究的目的。该项工作的开展较为系统地建立了暂冲式风洞的流场控制模型,建立的模型将为下一阶段基于现代控制理论的控制器设计奠定基础。