Brassica napus(oilseed rape)is sensitive to boron(B)deficiency and exhibits young leaf curling in response to low-B stress at the seedling stage,which leads to reduced photosynthesis and plant growth.So far,no gene ha...Brassica napus(oilseed rape)is sensitive to boron(B)deficiency and exhibits young leaf curling in response to low-B stress at the seedling stage,which leads to reduced photosynthesis and plant growth.So far,no gene has been identified to be involved in B deficiency induced leaf curling.Our previous results showed the transcription factor BnaA1.WRKY53 might be involved in B-deficiency tolerance.However,altered BnaA1.WRKY53 expression does not influence B concentration in shoot,root and leaf cell walls,which suggests Bna A1.WRKY53 might be involved in other biological processes.Indeed,phenotypic and anatomical analyses revealed that BnaA1.WRKY53 negatively regulated the leaf curling induced by leaf epinasty by suppressing the overexpansion of palisade cells under B deficiency.Further transcriptome enrichment analysis of differentially expressed genes(DEGs)between wild-type and BnaA1.WRKY53overexpression line showed auxin response pathway was enriched.In addition,Arabidopsis DR5::GFP auxin reporter line showed B deficiency caused predominant auxin signal accumulation in the adaxial side and concomitant adaxial cell expansion,which indicated that B deficiency may induce leaf curling by altering auxin distribution.Phytohormone quantification and gene expression analysis demonstrated that BnaA1.WRKY53 prevent auxin overaccumulation in leaves by suppressing auxin biosynthetic genes under B deficiency.Furthermore,exogenous 1-naphthlcetic acid(NAA)treatment experiments revealed that high auxin could induce leaf curling and BnaA1.WRKY53 expression.Overall,these findings demonstrate that auxin and the transcription factor BnaA1.WRKY53 synergistically regulate leaf curling to maintain an optimal leaf area under B deficiency,and provide novel insights into the resistance mechanisms against B-deficiency-induced leaf curling in oilseed rape.展开更多
Appropriate flowering time in rapeseed(Brassica napus L.)is vital for preventing losses from weather,diseases,and pests.However,the molecular basis of its regulation remains largely unknown.Here,a genome-wide associat...Appropriate flowering time in rapeseed(Brassica napus L.)is vital for preventing losses from weather,diseases,and pests.However,the molecular basis of its regulation remains largely unknown.Here,a genome-wide association study identifies BnaC09.FUL,a MADS-box transcription factor,as a promising candidate gene regulating flowering time in B.napus.BnaC09.FUL expression increases sharply in B.napus shoot apices near bolting.BnaC09.FUL overexpression results in early flowering,while BnaFUL mutation causes delayed flowering in B.napus.A zinc finger transcription factor,BnaC06.WIP2,is identified as an interaction partner of BnaC09.FUL,and BnaC06.WIP2 overexpression delays flowering in B.napus,with RNA sequencing revealing its influence on the expression of many flowering-associated genes.We further demonstrate that BnaC06.WIP2 directly represses the expression of BnaA05.SOC1,BnaC03.SOC1,BnaC04.SOC1,BnaC06.FT,BnaA06.LFY,BnaC07.FUL,BnaA08.CAL,and BnaC03.CAL and indirectly inhibits the expression of other flowering time-related genes.Genetic and molecular investigations highlight the antagonistic relationship between BnaC09.FUL and BnaC06.WIP2 in regulating the flowering time in B.napus through direct regulation of the expression of BnaC03.SOC1,BnaA08.CAL,and BnaC03.CAL.Overall,our findings provide a mechanism by which the BnaC09.FUL–BnaC06.WIP2 transcriptional regulatory module controls the flowering time in B.napus.展开更多
Flooding can lead to oxygen deprivation in rapeseed,negatively affecting its growth and development and ul-timately reducing yields.Vitreoscilla hemoglobin(VHb),a bacterial hemoglobin with a high oxygen-binding affini...Flooding can lead to oxygen deprivation in rapeseed,negatively affecting its growth and development and ul-timately reducing yields.Vitreoscilla hemoglobin(VHb),a bacterial hemoglobin with a high oxygen-binding affinity,plays a key role in enhancing oxygen uptake and metabolic efficiency under low-oxygen conditions.Through genetic transformation,we overexpressed the VHb gene in rapeseed,which resulted in significant im-provements in survival rate,root length,and biomass under submerged conditions.Additionally,we observed that transgenic plants developed adventitious roots in response to submergence stress.These transgenic plants also exhibited increased activities of ethanol dehydrogenase and pyruvate decarboxylase-enzymes associated with anaerobic respiration.Our findings indicate that VHb enhances flooding tolerance in rapeseed by promoting adventitious root formation and strengthening the plant's capacity for fermentation metabolism under anaerobic conditions.展开更多
To investigate the function of the zinc finger protein BnZAT12 in Brassica napus,bioinformatics analysis was conducted on BnZAT12.The results showed that the open reading frame of BnZAT12 was 477 bp in length,encoding...To investigate the function of the zinc finger protein BnZAT12 in Brassica napus,bioinformatics analysis was conducted on BnZAT12.The results showed that the open reading frame of BnZAT12 was 477 bp in length,encoding 158 amino acid residues.The deduced protein had a molecular weight of 16864.72 Da and a theoretical isoelectric point of 9.68.The phylogenetic tree showed that Brassica napus had the closest relationship with Brassica oleracea belonging to Brassicaceae and the farthest relationship with Oryza sativa.The analysis of the promoter region suggested that BnZAT12 may be regulated by factors such as light,abscisic acid,and methyl jasmonate.Furthermore,the BnZAT12 overexpression vector was constructed by seamless cloning.This study laid a foundation of molecular biology for further elucidating the role of BnZAT12.展开更多
The 12-oxophytodienoate reductase(OPR),a flavin mononucleotide-dependent oxidoreductase,regulates plant responses to stress conditions such as heavy metals,drought,saline-alkali,pests,and diseases by participating in ...The 12-oxophytodienoate reductase(OPR),a flavin mononucleotide-dependent oxidoreductase,regulates plant responses to stress conditions such as heavy metals,drought,saline-alkali,pests,and diseases by participating in the synthesis of plant hormones such as jasmonic acid(JA).In this study,homologous cloning was employed to obtain the Brassica napus‘Zhongshuang 11’OPR1 gene(BnOPR1).Bioinformatics analysis was conducted for the deduced protein BnOPR1,and a plant expression vector for BnOPR1 was constructed.The bioinformatics analysis revealed that BnOPR1 was 1125 bp in length,encoding 375 amino acid residues.The deduced protein had a molecular weight of 41.604 kDa,an isoelectric point of 6.05,a molecular formula of C1853H2855N511O550S16,an aliphatic index of 35.47,a lipophilicity index of 74.87,and an instability index of 39.49.It had 49 phosphorylation sites and lacked transmembrane domains and signal peptides.The phylogenetic analysis indicated that BnOPR1 had a close relationship with the OPR1 protein from Brassica rapa since they shared the same clade,while it had a distant relationship with the OPR1 protein from Raphanus sativus.In this paper,the expression vector for BnOPR1 was successfully constructed by seamless cloning and named pBnOPR1.The findings laid a foundation for further studying the roles of BnOPR1 in the response to antimony stress.展开更多
Sclerotinia sclerotiorum,a fungus that causes a devastating fungal disease of rapeseed(Brassica napus),causes significant yield losses globally.Carbon dots(CDs),a class of carbon-based nanomaterials,have emerged as pr...Sclerotinia sclerotiorum,a fungus that causes a devastating fungal disease of rapeseed(Brassica napus),causes significant yield losses globally.Carbon dots(CDs),a class of carbon-based nanomaterials,have emerged as promising agents for plant disease management owing to low toxicity and biocompatibility.This study demonstrates the antifungal potential of Salvia miltiorrhiza-derived CDs in enhancing resistance to S.sclerotiorum in rapeseed.In vitro assays revealed concentration-dependent suppression of fungal growth by CDs.In planta applications triggered multifaceted defense responses evidenced by:(1)increased glucosinolate accumulation and redox homeostasis through ROS modulation and elevated superoxide dismutase/catalase activities;(2)transcriptional activation of ROS-scavenging systems and biosynthesis pathways for defensive metabolites(flavonoids and phenylpropanes);and(3)restoration of pathogen-impaired physiological processes,including photosynthetic recovery via Calvin cycle reactivation,energy metabolism through TCA cycle enhancement,and stress-responsive hormone signaling.Integrated multi-omics analyses further indicated that CDs establish a coordinated defense network by simultaneously optimizing metabolic homeostasis and amplifying disease resistance mechanisms.These findings position CDs as a novel eco-friendly strategy for biotic stress management,providing a sustainable approach to mitigate crop losses caused by fungal pathogens.展开更多
Brassica napus L. (B. napus), recognized as a significant cash and oil crop, faces challenges in popularization and application in northern China due to its limited cold resistance. Clarifying the mechanism of cold st...Brassica napus L. (B. napus), recognized as a significant cash and oil crop, faces challenges in popularization and application in northern China due to its limited cold resistance. Clarifying the mechanism of cold stress on gene regulation and signal transduction in B. napus is crucial. To address these issues, we conducted transcriptome sequencing and gene expression analysis, along with gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway profiling under natural (25℃) and cold (4℃) conditions in cold tolerant 16VHNTS309 and weak cold-resistant Tianyou 2238 B. napus seedlings. Enhanced genomic annotation was achieved through additional sequencing. A total of 6127 and 8531 differentially expressed genes (DEG) were identified in 16VHNTS309 and Tianyou 2238, respectively. The expression patterns of 23 DEGs were validated by quantitative real-time PCR (qRT-PCR), confirming the RNA-Seq results. Under cold stress, 58 pathways in 16VHNTS309 demonstrated significant changes (q-Value < 0.05), compared to 9 pathways in Tianyou 2238 (q-Value < 0.05), highlighting B. napus’ sophisticated regulatory network which aids in managing growth and development challenges. After 48 h of cold stress treatment, genes associated with reactive oxygen species (ROS) clearance, such as those involved in antioxidant VB6, sulfur metabolism, peroxisomes, and phagosomes, were notably up-regulated in 16VHNTS309, indicating its robust ROS clearance capability. Significant gene expressions within Ca^(2+), MAPK, and transcription factor pathways related to ROS suggest that varieties with strong cold resistance possess a complex signal regulation mechanism. Comprehensive analyses of stomatal cells, physiological parameters of ROS, ABA, and H2S, along with transcriptomic data, revealed that optimal ROS levels interact with ABA and H2S to regulate stomatal closure in B. napus 16VHNTS309 under the influence of antioxidant enzymes.展开更多
[Objective] The aim of this study was to investigate the characteristics and mechanism of chemical emasculation in rapeseed and to provide the theoretical basis for development and utilization of new chemical gametoci...[Objective] The aim of this study was to investigate the characteristics and mechanism of chemical emasculation in rapeseed and to provide the theoretical basis for development and utilization of new chemical gametocides.[Method] The activity of peroxidase,catalase and the content of hydrogen peroxide,malondialdehyde in leaves and flower buds of Brassica napus cultivars Qinyou No.3 and L89 induced by the chemical gametocide EXP in the course of male sterility were studied.[Result] Protective enzyme activity and the content of hydrogen peroxide,malondialdehyde in rapeseed treated with EXP changed significantly,which indicated that active oxygen metabolism was abnormal.Furthermore,there was a significant difference in the reaction degree of different cultivars and organs treated by EXP.[Conclusion] There was a correlation between the disturbance of active oxygen metabolism and the male sterility induced by chemical gametocide EXP.展开更多
The intergeneric hybridization between Brassica napus L. cv. oro and Matthiola incana (L.) R. Br. was carried out to study the phytogenetic peculiarities of the hybrid plants. In order to improve the oil quality of ra...The intergeneric hybridization between Brassica napus L. cv. oro and Matthiola incana (L.) R. Br. was carried out to study the phytogenetic peculiarities of the hybrid plants. In order to improve the oil quality of rape seed, ovaries of B. napus pollinated with pollen of M. incana, were cut off and inoculated onto MS media supplemented with various plant hormones at the 7th day after pollination. Two mature embryos were obtained from 750 pollinated ovaries cultured in vitro. The percentage of seed set was 0.26%. The mature embryos were transferred onto the MS media supplemented with 2.0 mg/L 6-BA + 0.1 mg/L NAA, and a compound bud was produced later. The compound bud was then cut into a number of single buds, which were transferred onto fresh media. Twenty-two plantlets in vitro were developed from the above single buds. The hybrid plants (F-1) were basically intermediate between the two parents in many,characters with a few showing hybrid vigor. The fertility of hybrid plants (F-1) was poor. Cytological studies revealed that the hybrid plants (F-1) were mixoploid. in nature. The chromosome number of many somatic cells was 2n = 26, which was the sum of the chromosome number of the two parents. The chromosome number of other somatic cells was 2n = 38, similar to that of B. napus. The hybrid offspring (F-2) from the selfed hybrid plants (F-1) showed polymorphism. Among the hybrid offspring (F-2) some were nearly matroclinous and fertile, similar to B. napus. some others were intermediate between the two parents and less fertile, and a few were poorly developed and nearly infertile. From the hybrid offspring a few plants with improved seed-oil quality were obtained.展开更多
[Objective] The aim was to compare differences of SPAD value, chloro- phyll content, agronomic characters, economic characters and yield traits to analyze correlation of SPAD value with other indices and establish reg...[Objective] The aim was to compare differences of SPAD value, chloro- phyll content, agronomic characters, economic characters and yield traits to analyze correlation of SPAD value with other indices and establish regression functions. [Method] Based on 34 Brassica napus L. varieties, SPAD value, chlorophyll content, agronomic characters, economic characters and yield traits were measured and re- gression functions were established according to correlations. [Result] SPAD value, chlorophyll content, agronomic and economic characters and yield traits all achieved significant level in differences among 34 varieties. Specifically, SPAD value was of extremely significant correlation with chlorophyll a and b, total chlorophyll and carotenoid, and the correlation from high to low was chl-b〉chl-z〉chl-a〉chl-x. SPAD value was of significantly positive correlation with total pod number per plant, plant height, seed number per pod, yield per plant and harvest yield, and of insignificant correlation with branch point height, effective branch number, pod density of main stem, and pod length. [Conclusion] It is simple and rapid to predict chlorophyll con- tent, economic characters and yields of Brassica napus L. with SPAD value and re- gression functions.展开更多
[Objective] The aim of this study was to screen drought-tolerant Brassica napus L. germplasm resources by analyzing their physiological and biochemical changes under drought stress. [Method] Forty varieties of B. napu...[Objective] The aim of this study was to screen drought-tolerant Brassica napus L. germplasm resources by analyzing their physiological and biochemical changes under drought stress. [Method] Forty varieties of B. napus varieties were cultured under PEG-6000 osmotic stress and extreme drought stress in pots, re- spectively. Then, the contents of chlorophyll, carotenoid, proline, malondialdehyde (MDA), soluble sugar, soluble protein, and the activities of superoxide dismutase (SOD), catalase(CAT), peroxidase(POD) were measured under drought stress. [Result] Sever- al drought-tolerant varieties of B. napus were screened out: YAU200908, Xiangyou No.15, YAU200903, YAU200907, YAU200906 and YAU200904. Physiological and biochemical analysis showed that, the contents of chlorophyll and carotenoid de- creased with drought stress increasing; the contents of proline, soluble sugar, solu- ble protein, MDA and the activities of SOD,CAT, POD raised with drought stress in- creasing. [Conclusion] In the rapeseed varieties with stronger drought tolerance, the decrease in carotenoid content and the increase in proline content, soluble sugar content, MDA content, SOD activity, CAT activity were more obvious, so all these physiological and biochemical indices can be used to evaluate the drought tolerance of rapeseed.展开更多
[Objective] The aim was to evaluate the effects of different concentrations of ABA on photosynthetic characteristics of pods and yield of Brassica napus and analyze the relationships between ABA concentration and yiel...[Objective] The aim was to evaluate the effects of different concentrations of ABA on photosynthetic characteristics of pods and yield of Brassica napus and analyze the relationships between ABA concentration and yield components, to provide theoretical basis for cultivation of high-yield rapeseed. [Method] At the end of flowering stage, the rape plants were separately sprayed with 1, 2, 100 and 200μmol/L of ABA; photosynthetic parameters, water use efficiency (WUE), yield and yield components of the rape plants were investigated 0, 5, 10 and 15 d later, respectively. [Result] ABA treatment with different concentrations significantly changed pod photosynthetic parameters and yield components of rapeseed. Low concentra- tions of ABA could improve pod's net photosynthetic rate and yield components while high concentrations had the contrary effect. [Conclusion] Whether ABA func- tioned in inhibiting or promoting role might depend on the interaction between endogenous hormone levels and exogenous ABA concentration. Improvement of WUE would be the main reason for yield increasing.展开更多
[Objective] The study was to investigate roles of Brassica napus EINB in ( BnEIN3 ) resistance to Sclerotinia sclerotiorum. [ Methods] Genomic PCR and RT-PCR were carded out to isolate genomic DNA and cDNA sequences...[Objective] The study was to investigate roles of Brassica napus EINB in ( BnEIN3 ) resistance to Sclerotinia sclerotiorum. [ Methods] Genomic PCR and RT-PCR were carded out to isolate genomic DNA and cDNA sequences of BnEIN3 from oilseed rape, based on the highly conserved region of EIN3 gene from Arabidopsis thaliana and the homologous sequences of oilseed rape ESTs. Expression levels of BnEIN3 were detected in three varieties of oilseed rape inoculated with S. sclerotiorum by real-time quantitative PCR.[Results] A 1 947 bp DNA fragment was obtained from oilseed rape. The fragment shared 82% identity to A. thaliana EIIV3, encoded 614 amino acids containing an EIN3 domain, and was named as BnEIN3. Real-time PCR results showed that expression patterns of BnEIN3 were drastically different in different varieties. In highly resistant oilseed rape variety D083, BnEIN3 expression level was significantly increased 72 h after S. sclerotiorum inoculation whereas in middle resistant and susceptible varieties Zhongshuang 9 and 84039, BnEIN3 expression was suppressed. [ Conclusion ] BnEIIV3 may play an important role in oilseed rape resistance to S. sclerotiorum.展开更多
[Objective] The aim was to investigate the effects of fertilizer type on di- rect-seeded rapeseed and to explore effective fertilizing. [Method] Four treatments including different types of fertilizers were set in the...[Objective] The aim was to investigate the effects of fertilizer type on di- rect-seeded rapeseed and to explore effective fertilizing. [Method] Four treatments including different types of fertilizers were set in the test. Growth, photosynthesis and chlorophyll fluorescence parameters at flowering stage such as plant height, stem diameter, shoot and root dry matter, net photosynthesis, light energy conversion effi- ciency (Fv/Fm) and SPAD value, were investigated. The effects of fertilizer treat-ments on the yield of rapeseed were evaluated as well. [Result] Both multi-functional fertilizer and controlled release fertilizer could improve plant height, stem diameter, shoot dry matter, SPAD value, net photosynthesis, non-photochemical quenching (NPQ), etc., which helped increase yield and stress resistance. [Conclusion] Both multi-functional fertilizer and controlled release fertilizer could improve yield significantly while multi-functional fertilizer (MFF) was better than controlled release fertilizer (CRF).展开更多
Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revea...Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revealed that 9 out of the 10 mitochondrial genes, except for atp6, showed no difference in different tissues of the corresponding materials of NCα CMS system and that they might be constitutively expressed genes. Eight genes, such as orf139, orf222, atpl, cox1, cox2, cob, rm5S, and rm26S, showed no difference among the three tissues of all the materials detected. So the expression of these eight genes was not regulated by nuclear genes and was not tissue-specific. The transcripts of atp9 were identical among different tissues, but diverse among different materials, indicating that transcription of atp9 was neither controlled by nuclear gene nor tissue-specific. Gene atp6 displayed similar transcripts with the same size among different tissues of all the materials but differed in abundance among tissues of corresponding materials and its expression might be tissue-specific under regulation of nuclear gene. Moreover, three transcripts of orf222 were detected in the floral buds of NCa cms and fertile F1, but no transcript was detected in floral buds of the maintainer line.The transcription of orf139 was similar to that of orf222 but only two transcripts of 0.8 kb and 0.6 kb were produced. The atp9 probe detected a single transcript of 0.6 kb in NCa cms and in maintainer line and an additional transcript of 1.2 kb in fertile F1. The relationship of expression of orf222, orf139, and atp9 with NCa sterility was discussed.展开更多
[Objective] Ogura cytoplasmic male sterility (Ogu CMS) is an ideal pollina- tion control system for heterosis utilization in Brassica napus. However, fertility-restor- ing (Rf) gene only exists in radish chromosom...[Objective] Ogura cytoplasmic male sterility (Ogu CMS) is an ideal pollina- tion control system for heterosis utilization in Brassica napus. However, fertility-restor- ing (Rf) gene only exists in radish chromosome and is closely linked with glucosino- late gene, making it hardly to be applied directly in production. Thus, the key to apply Ogu CMS in Brassica napus is to introduce the Rf genes and to break its linkage with glucosinolate gene. [Me^od] To overcome the interspecific reproductive barrier, grafting was conducted by using Raphanobrassica (2n=-58) as donor materi- als of Rf genes. The obtained interspecific hybrids were analyzed from the agronom- ic traits, seed-setting rate and fertility restoration rate for screening fertility-restoring materials. [Results] By elaborative selection, a homozygous Ogu CMS fertility-restor- ing B. napus material named CLR650 was selected out, whose somatic chromosome numbers were found to be 2n=38-40. Some abnormal phenomena like anaphase bridges and lagging chromosomes in meiosis were observed, but the abnormalities did not affect the formation of normal pollens. It can restore the male fertility in both progenies of self-pollination and testcross by 100%. Molecular analysis showed that CLR650 harbors Ogu CMS fertility-restoring gene, which is obviously different from that of Ogu CMS restore line Rl13 and RHH1 by detecting the molecular markers closely linked with radish restorer gene (Rf0). [Conclusion] The CLR650 could be a new restorer for the Ogu CMS in B. napus.展开更多
[ Objective] This study was to reveal the differences in crude fat and glucosinolates between self pollinated seeds and naturally pollinated seeds in Brassica napus in sichuan ecological region.. [ Method] Near-infrar...[ Objective] This study was to reveal the differences in crude fat and glucosinolates between self pollinated seeds and naturally pollinated seeds in Brassica napus in sichuan ecological region.. [ Method] Near-infrared spectroscopy method (NIRS) was employed to measure the quality components in self pollinated seeds and naturally pollinated seeds of 861 shares of Brassica napus from Sichuan ecological region. And correlation analysis and regression analysis were conducted based on the experimental data via SPSS (statistics package for social science). [ Result] The contents of crude fat in the self pollinated seeds were commonly a higher than that in the naturally pollinated seeds at 0.01 significant level; while the contents of glucosinolates in the self pollinated seeds and the naturally pollinated seeds were insignificantly different. Both the correlation relationship and linear regression for the crude fat between the self pollinated seeds and naturally pollinated seeds reached the significant level. The regression equations for the contents of crude fat(y1 ) and glucosinolates( y2 ) in the naturally pollinated seeds and of crude fat( x1 ) and glucosinolates( x2 ) in self pollinated seeds were respectively determined to be y1 = 16.844 +0.614x1 and y2 = -0.620 + 1.017 x2. [ Conclusion] In Brassica napus breeding, crude fat in naturally pollinated seeds should be emphatically taken into account, meanwhile concurrently considering that in self pollinated seeds; while glucosinolates in both the self pollinated seeds and the naturally pollinated seeds must be simultaneously concerned.展开更多
基金supported by the National Natural Science Foundation of China(32002122,32372805)。
文摘Brassica napus(oilseed rape)is sensitive to boron(B)deficiency and exhibits young leaf curling in response to low-B stress at the seedling stage,which leads to reduced photosynthesis and plant growth.So far,no gene has been identified to be involved in B deficiency induced leaf curling.Our previous results showed the transcription factor BnaA1.WRKY53 might be involved in B-deficiency tolerance.However,altered BnaA1.WRKY53 expression does not influence B concentration in shoot,root and leaf cell walls,which suggests Bna A1.WRKY53 might be involved in other biological processes.Indeed,phenotypic and anatomical analyses revealed that BnaA1.WRKY53 negatively regulated the leaf curling induced by leaf epinasty by suppressing the overexpansion of palisade cells under B deficiency.Further transcriptome enrichment analysis of differentially expressed genes(DEGs)between wild-type and BnaA1.WRKY53overexpression line showed auxin response pathway was enriched.In addition,Arabidopsis DR5::GFP auxin reporter line showed B deficiency caused predominant auxin signal accumulation in the adaxial side and concomitant adaxial cell expansion,which indicated that B deficiency may induce leaf curling by altering auxin distribution.Phytohormone quantification and gene expression analysis demonstrated that BnaA1.WRKY53 prevent auxin overaccumulation in leaves by suppressing auxin biosynthetic genes under B deficiency.Furthermore,exogenous 1-naphthlcetic acid(NAA)treatment experiments revealed that high auxin could induce leaf curling and BnaA1.WRKY53 expression.Overall,these findings demonstrate that auxin and the transcription factor BnaA1.WRKY53 synergistically regulate leaf curling to maintain an optimal leaf area under B deficiency,and provide novel insights into the resistance mechanisms against B-deficiency-induced leaf curling in oilseed rape.
基金supported by the National Key Research and Development Program of China(2022YFD1200400)the Scientific and Technological Innovation Team of Shaanxi Province(2024RSCXTD-69)+1 种基金the Key Research and Development Program of Shaanxi Province(2021LLRH-07)a grant from the Yang Ling Seed Industry Innovation Center(K3031122024).
文摘Appropriate flowering time in rapeseed(Brassica napus L.)is vital for preventing losses from weather,diseases,and pests.However,the molecular basis of its regulation remains largely unknown.Here,a genome-wide association study identifies BnaC09.FUL,a MADS-box transcription factor,as a promising candidate gene regulating flowering time in B.napus.BnaC09.FUL expression increases sharply in B.napus shoot apices near bolting.BnaC09.FUL overexpression results in early flowering,while BnaFUL mutation causes delayed flowering in B.napus.A zinc finger transcription factor,BnaC06.WIP2,is identified as an interaction partner of BnaC09.FUL,and BnaC06.WIP2 overexpression delays flowering in B.napus,with RNA sequencing revealing its influence on the expression of many flowering-associated genes.We further demonstrate that BnaC06.WIP2 directly represses the expression of BnaA05.SOC1,BnaC03.SOC1,BnaC04.SOC1,BnaC06.FT,BnaA06.LFY,BnaC07.FUL,BnaA08.CAL,and BnaC03.CAL and indirectly inhibits the expression of other flowering time-related genes.Genetic and molecular investigations highlight the antagonistic relationship between BnaC09.FUL and BnaC06.WIP2 in regulating the flowering time in B.napus through direct regulation of the expression of BnaC03.SOC1,BnaA08.CAL,and BnaC03.CAL.Overall,our findings provide a mechanism by which the BnaC09.FUL–BnaC06.WIP2 transcriptional regulatory module controls the flowering time in B.napus.
基金supported by National Key Research and Development Program of China(2023YFD1201403)The Science and Technology Innovation Program of Hunan Province(2023RC1077)+2 种基金Key Research and Development Projects of Hunan Provincial(2023NK2012)Hunan Provincial Science and Technology Talent Promotion Project(2023 TJ-Z09)The Hunan Agricultural Science and Technology Innovation Fund Project(2024CX096).
文摘Flooding can lead to oxygen deprivation in rapeseed,negatively affecting its growth and development and ul-timately reducing yields.Vitreoscilla hemoglobin(VHb),a bacterial hemoglobin with a high oxygen-binding affinity,plays a key role in enhancing oxygen uptake and metabolic efficiency under low-oxygen conditions.Through genetic transformation,we overexpressed the VHb gene in rapeseed,which resulted in significant im-provements in survival rate,root length,and biomass under submerged conditions.Additionally,we observed that transgenic plants developed adventitious roots in response to submergence stress.These transgenic plants also exhibited increased activities of ethanol dehydrogenase and pyruvate decarboxylase-enzymes associated with anaerobic respiration.Our findings indicate that VHb enhances flooding tolerance in rapeseed by promoting adventitious root formation and strengthening the plant's capacity for fermentation metabolism under anaerobic conditions.
文摘To investigate the function of the zinc finger protein BnZAT12 in Brassica napus,bioinformatics analysis was conducted on BnZAT12.The results showed that the open reading frame of BnZAT12 was 477 bp in length,encoding 158 amino acid residues.The deduced protein had a molecular weight of 16864.72 Da and a theoretical isoelectric point of 9.68.The phylogenetic tree showed that Brassica napus had the closest relationship with Brassica oleracea belonging to Brassicaceae and the farthest relationship with Oryza sativa.The analysis of the promoter region suggested that BnZAT12 may be regulated by factors such as light,abscisic acid,and methyl jasmonate.Furthermore,the BnZAT12 overexpression vector was constructed by seamless cloning.This study laid a foundation of molecular biology for further elucidating the role of BnZAT12.
文摘The 12-oxophytodienoate reductase(OPR),a flavin mononucleotide-dependent oxidoreductase,regulates plant responses to stress conditions such as heavy metals,drought,saline-alkali,pests,and diseases by participating in the synthesis of plant hormones such as jasmonic acid(JA).In this study,homologous cloning was employed to obtain the Brassica napus‘Zhongshuang 11’OPR1 gene(BnOPR1).Bioinformatics analysis was conducted for the deduced protein BnOPR1,and a plant expression vector for BnOPR1 was constructed.The bioinformatics analysis revealed that BnOPR1 was 1125 bp in length,encoding 375 amino acid residues.The deduced protein had a molecular weight of 41.604 kDa,an isoelectric point of 6.05,a molecular formula of C1853H2855N511O550S16,an aliphatic index of 35.47,a lipophilicity index of 74.87,and an instability index of 39.49.It had 49 phosphorylation sites and lacked transmembrane domains and signal peptides.The phylogenetic analysis indicated that BnOPR1 had a close relationship with the OPR1 protein from Brassica rapa since they shared the same clade,while it had a distant relationship with the OPR1 protein from Raphanus sativus.In this paper,the expression vector for BnOPR1 was successfully constructed by seamless cloning and named pBnOPR1.The findings laid a foundation for further studying the roles of BnOPR1 in the response to antimony stress.
基金funded by the Fundamental Research Funds for the Provincial Universities of Zhejiang(2024TD001)“San Nong Jiu Fang”Sciences and Technologies Cooperation Project of Zhejiang Province(2024SNJF010)General Research Project of Zhejiang Provincial Department of Education(Special Project for Reforming the Training Mode of Professional Degree Graduate Students)(Y202456263).
文摘Sclerotinia sclerotiorum,a fungus that causes a devastating fungal disease of rapeseed(Brassica napus),causes significant yield losses globally.Carbon dots(CDs),a class of carbon-based nanomaterials,have emerged as promising agents for plant disease management owing to low toxicity and biocompatibility.This study demonstrates the antifungal potential of Salvia miltiorrhiza-derived CDs in enhancing resistance to S.sclerotiorum in rapeseed.In vitro assays revealed concentration-dependent suppression of fungal growth by CDs.In planta applications triggered multifaceted defense responses evidenced by:(1)increased glucosinolate accumulation and redox homeostasis through ROS modulation and elevated superoxide dismutase/catalase activities;(2)transcriptional activation of ROS-scavenging systems and biosynthesis pathways for defensive metabolites(flavonoids and phenylpropanes);and(3)restoration of pathogen-impaired physiological processes,including photosynthetic recovery via Calvin cycle reactivation,energy metabolism through TCA cycle enhancement,and stress-responsive hormone signaling.Integrated multi-omics analyses further indicated that CDs establish a coordinated defense network by simultaneously optimizing metabolic homeostasis and amplifying disease resistance mechanisms.These findings position CDs as a novel eco-friendly strategy for biotic stress management,providing a sustainable approach to mitigate crop losses caused by fungal pathogens.
基金supported by the National Nature Science Foundation Regional Fund Project(32360455)QingyangCity Joint Research Fund Project—Major Project(QY-STK-2024A-046)+1 种基金Doctoral Foundation of Longdong University(XYBYZK2107)University Teachers Innovation Fund Project of Gansu Province(2025A-198).
文摘Brassica napus L. (B. napus), recognized as a significant cash and oil crop, faces challenges in popularization and application in northern China due to its limited cold resistance. Clarifying the mechanism of cold stress on gene regulation and signal transduction in B. napus is crucial. To address these issues, we conducted transcriptome sequencing and gene expression analysis, along with gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway profiling under natural (25℃) and cold (4℃) conditions in cold tolerant 16VHNTS309 and weak cold-resistant Tianyou 2238 B. napus seedlings. Enhanced genomic annotation was achieved through additional sequencing. A total of 6127 and 8531 differentially expressed genes (DEG) were identified in 16VHNTS309 and Tianyou 2238, respectively. The expression patterns of 23 DEGs were validated by quantitative real-time PCR (qRT-PCR), confirming the RNA-Seq results. Under cold stress, 58 pathways in 16VHNTS309 demonstrated significant changes (q-Value < 0.05), compared to 9 pathways in Tianyou 2238 (q-Value < 0.05), highlighting B. napus’ sophisticated regulatory network which aids in managing growth and development challenges. After 48 h of cold stress treatment, genes associated with reactive oxygen species (ROS) clearance, such as those involved in antioxidant VB6, sulfur metabolism, peroxisomes, and phagosomes, were notably up-regulated in 16VHNTS309, indicating its robust ROS clearance capability. Significant gene expressions within Ca^(2+), MAPK, and transcription factor pathways related to ROS suggest that varieties with strong cold resistance possess a complex signal regulation mechanism. Comprehensive analyses of stomatal cells, physiological parameters of ROS, ABA, and H2S, along with transcriptomic data, revealed that optimal ROS levels interact with ABA and H2S to regulate stomatal closure in B. napus 16VHNTS309 under the influence of antioxidant enzymes.
基金Supported by the Special Research Fund of "National life Science&Technology Training Base" of Northwest A&F University[2006-(1)-061]~~
文摘[Objective] The aim of this study was to investigate the characteristics and mechanism of chemical emasculation in rapeseed and to provide the theoretical basis for development and utilization of new chemical gametocides.[Method] The activity of peroxidase,catalase and the content of hydrogen peroxide,malondialdehyde in leaves and flower buds of Brassica napus cultivars Qinyou No.3 and L89 induced by the chemical gametocide EXP in the course of male sterility were studied.[Result] Protective enzyme activity and the content of hydrogen peroxide,malondialdehyde in rapeseed treated with EXP changed significantly,which indicated that active oxygen metabolism was abnormal.Furthermore,there was a significant difference in the reaction degree of different cultivars and organs treated by EXP.[Conclusion] There was a correlation between the disturbance of active oxygen metabolism and the male sterility induced by chemical gametocide EXP.
文摘The intergeneric hybridization between Brassica napus L. cv. oro and Matthiola incana (L.) R. Br. was carried out to study the phytogenetic peculiarities of the hybrid plants. In order to improve the oil quality of rape seed, ovaries of B. napus pollinated with pollen of M. incana, were cut off and inoculated onto MS media supplemented with various plant hormones at the 7th day after pollination. Two mature embryos were obtained from 750 pollinated ovaries cultured in vitro. The percentage of seed set was 0.26%. The mature embryos were transferred onto the MS media supplemented with 2.0 mg/L 6-BA + 0.1 mg/L NAA, and a compound bud was produced later. The compound bud was then cut into a number of single buds, which were transferred onto fresh media. Twenty-two plantlets in vitro were developed from the above single buds. The hybrid plants (F-1) were basically intermediate between the two parents in many,characters with a few showing hybrid vigor. The fertility of hybrid plants (F-1) was poor. Cytological studies revealed that the hybrid plants (F-1) were mixoploid. in nature. The chromosome number of many somatic cells was 2n = 26, which was the sum of the chromosome number of the two parents. The chromosome number of other somatic cells was 2n = 38, similar to that of B. napus. The hybrid offspring (F-2) from the selfed hybrid plants (F-1) showed polymorphism. Among the hybrid offspring (F-2) some were nearly matroclinous and fertile, similar to B. napus. some others were intermediate between the two parents and less fertile, and a few were poorly developed and nearly infertile. From the hybrid offspring a few plants with improved seed-oil quality were obtained.
基金Supported by Jiangsu Support-Plan(BE2012327)Jiangsu Agricultural"Three New Engineering"Project(SXG2013006)~~
文摘[Objective] The aim was to compare differences of SPAD value, chloro- phyll content, agronomic characters, economic characters and yield traits to analyze correlation of SPAD value with other indices and establish regression functions. [Method] Based on 34 Brassica napus L. varieties, SPAD value, chlorophyll content, agronomic characters, economic characters and yield traits were measured and re- gression functions were established according to correlations. [Result] SPAD value, chlorophyll content, agronomic and economic characters and yield traits all achieved significant level in differences among 34 varieties. Specifically, SPAD value was of extremely significant correlation with chlorophyll a and b, total chlorophyll and carotenoid, and the correlation from high to low was chl-b〉chl-z〉chl-a〉chl-x. SPAD value was of significantly positive correlation with total pod number per plant, plant height, seed number per pod, yield per plant and harvest yield, and of insignificant correlation with branch point height, effective branch number, pod density of main stem, and pod length. [Conclusion] It is simple and rapid to predict chlorophyll con- tent, economic characters and yields of Brassica napus L. with SPAD value and re- gression functions.
基金Supported by Rapeseed Industry Construction Program of Department of Agriculture of Yunnan ProvinceFund for Workstation of Academician Guan Chunyun from Department of Science and Technology of Yunnan Province~~
文摘[Objective] The aim of this study was to screen drought-tolerant Brassica napus L. germplasm resources by analyzing their physiological and biochemical changes under drought stress. [Method] Forty varieties of B. napus varieties were cultured under PEG-6000 osmotic stress and extreme drought stress in pots, re- spectively. Then, the contents of chlorophyll, carotenoid, proline, malondialdehyde (MDA), soluble sugar, soluble protein, and the activities of superoxide dismutase (SOD), catalase(CAT), peroxidase(POD) were measured under drought stress. [Result] Sever- al drought-tolerant varieties of B. napus were screened out: YAU200908, Xiangyou No.15, YAU200903, YAU200907, YAU200906 and YAU200904. Physiological and biochemical analysis showed that, the contents of chlorophyll and carotenoid de- creased with drought stress increasing; the contents of proline, soluble sugar, solu- ble protein, MDA and the activities of SOD,CAT, POD raised with drought stress in- creasing. [Conclusion] In the rapeseed varieties with stronger drought tolerance, the decrease in carotenoid content and the increase in proline content, soluble sugar content, MDA content, SOD activity, CAT activity were more obvious, so all these physiological and biochemical indices can be used to evaluate the drought tolerance of rapeseed.
基金Supported by National Natural Science Foundation of China(31101124)National Modern Rapeseed Industry Technology System~~
文摘[Objective] The aim was to evaluate the effects of different concentrations of ABA on photosynthetic characteristics of pods and yield of Brassica napus and analyze the relationships between ABA concentration and yield components, to provide theoretical basis for cultivation of high-yield rapeseed. [Method] At the end of flowering stage, the rape plants were separately sprayed with 1, 2, 100 and 200μmol/L of ABA; photosynthetic parameters, water use efficiency (WUE), yield and yield components of the rape plants were investigated 0, 5, 10 and 15 d later, respectively. [Result] ABA treatment with different concentrations significantly changed pod photosynthetic parameters and yield components of rapeseed. Low concentra- tions of ABA could improve pod's net photosynthetic rate and yield components while high concentrations had the contrary effect. [Conclusion] Whether ABA func- tioned in inhibiting or promoting role might depend on the interaction between endogenous hormone levels and exogenous ABA concentration. Improvement of WUE would be the main reason for yield increasing.
文摘[Objective] The study was to investigate roles of Brassica napus EINB in ( BnEIN3 ) resistance to Sclerotinia sclerotiorum. [ Methods] Genomic PCR and RT-PCR were carded out to isolate genomic DNA and cDNA sequences of BnEIN3 from oilseed rape, based on the highly conserved region of EIN3 gene from Arabidopsis thaliana and the homologous sequences of oilseed rape ESTs. Expression levels of BnEIN3 were detected in three varieties of oilseed rape inoculated with S. sclerotiorum by real-time quantitative PCR.[Results] A 1 947 bp DNA fragment was obtained from oilseed rape. The fragment shared 82% identity to A. thaliana EIIV3, encoded 614 amino acids containing an EIN3 domain, and was named as BnEIN3. Real-time PCR results showed that expression patterns of BnEIN3 were drastically different in different varieties. In highly resistant oilseed rape variety D083, BnEIN3 expression level was significantly increased 72 h after S. sclerotiorum inoculation whereas in middle resistant and susceptible varieties Zhongshuang 9 and 84039, BnEIN3 expression was suppressed. [ Conclusion ] BnEIIV3 may play an important role in oilseed rape resistance to S. sclerotiorum.
基金Supported by National Natural Science Foundation of China (31101124)National Modern Rapeseed Industry Technology SystemCentral Public-interest Scientific Institution Basal Research Fund (1610172009003)~~
文摘[Objective] The aim was to investigate the effects of fertilizer type on di- rect-seeded rapeseed and to explore effective fertilizing. [Method] Four treatments including different types of fertilizers were set in the test. Growth, photosynthesis and chlorophyll fluorescence parameters at flowering stage such as plant height, stem diameter, shoot and root dry matter, net photosynthesis, light energy conversion effi- ciency (Fv/Fm) and SPAD value, were investigated. The effects of fertilizer treat-ments on the yield of rapeseed were evaluated as well. [Result] Both multi-functional fertilizer and controlled release fertilizer could improve plant height, stem diameter, shoot dry matter, SPAD value, net photosynthesis, non-photochemical quenching (NPQ), etc., which helped increase yield and stress resistance. [Conclusion] Both multi-functional fertilizer and controlled release fertilizer could improve yield significantly while multi-functional fertilizer (MFF) was better than controlled release fertilizer (CRF).
基金This work was supported by the National High Technology R&D Project of China (No.2002AA207009) and Wuhan Dawn Project for Youth (No. 20035002016-36).
文摘Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revealed that 9 out of the 10 mitochondrial genes, except for atp6, showed no difference in different tissues of the corresponding materials of NCα CMS system and that they might be constitutively expressed genes. Eight genes, such as orf139, orf222, atpl, cox1, cox2, cob, rm5S, and rm26S, showed no difference among the three tissues of all the materials detected. So the expression of these eight genes was not regulated by nuclear genes and was not tissue-specific. The transcripts of atp9 were identical among different tissues, but diverse among different materials, indicating that transcription of atp9 was neither controlled by nuclear gene nor tissue-specific. Gene atp6 displayed similar transcripts with the same size among different tissues of all the materials but differed in abundance among tissues of corresponding materials and its expression might be tissue-specific under regulation of nuclear gene. Moreover, three transcripts of orf222 were detected in the floral buds of NCa cms and fertile F1, but no transcript was detected in floral buds of the maintainer line.The transcription of orf139 was similar to that of orf222 but only two transcripts of 0.8 kb and 0.6 kb were produced. The atp9 probe detected a single transcript of 0.6 kb in NCa cms and in maintainer line and an additional transcript of 1.2 kb in fertile F1. The relationship of expression of orf222, orf139, and atp9 with NCa sterility was discussed.
基金Supported by Open Fund of State Key Laboratory of Crop Genetic Improvement (ZK201101)the National High-Tech Research and Development Program of China(863 Program)(2009AA101105)Supported by the earmarked fund for Modern Agro-industry Technology Research System (CARS-13)~~
文摘[Objective] Ogura cytoplasmic male sterility (Ogu CMS) is an ideal pollina- tion control system for heterosis utilization in Brassica napus. However, fertility-restor- ing (Rf) gene only exists in radish chromosome and is closely linked with glucosino- late gene, making it hardly to be applied directly in production. Thus, the key to apply Ogu CMS in Brassica napus is to introduce the Rf genes and to break its linkage with glucosinolate gene. [Me^od] To overcome the interspecific reproductive barrier, grafting was conducted by using Raphanobrassica (2n=-58) as donor materi- als of Rf genes. The obtained interspecific hybrids were analyzed from the agronom- ic traits, seed-setting rate and fertility restoration rate for screening fertility-restoring materials. [Results] By elaborative selection, a homozygous Ogu CMS fertility-restor- ing B. napus material named CLR650 was selected out, whose somatic chromosome numbers were found to be 2n=38-40. Some abnormal phenomena like anaphase bridges and lagging chromosomes in meiosis were observed, but the abnormalities did not affect the formation of normal pollens. It can restore the male fertility in both progenies of self-pollination and testcross by 100%. Molecular analysis showed that CLR650 harbors Ogu CMS fertility-restoring gene, which is obviously different from that of Ogu CMS restore line Rl13 and RHH1 by detecting the molecular markers closely linked with radish restorer gene (Rf0). [Conclusion] The CLR650 could be a new restorer for the Ogu CMS in B. napus.
基金Supported by Key Quality Project of Sichuan Province during the 11thFive Year Period (2006YZGG-23) National 948 Program during the11thFive Year Period(2006-G04)Key Breeding Project of Sichuan Province(2006YZGG-5)~~
文摘[ Objective] This study was to reveal the differences in crude fat and glucosinolates between self pollinated seeds and naturally pollinated seeds in Brassica napus in sichuan ecological region.. [ Method] Near-infrared spectroscopy method (NIRS) was employed to measure the quality components in self pollinated seeds and naturally pollinated seeds of 861 shares of Brassica napus from Sichuan ecological region. And correlation analysis and regression analysis were conducted based on the experimental data via SPSS (statistics package for social science). [ Result] The contents of crude fat in the self pollinated seeds were commonly a higher than that in the naturally pollinated seeds at 0.01 significant level; while the contents of glucosinolates in the self pollinated seeds and the naturally pollinated seeds were insignificantly different. Both the correlation relationship and linear regression for the crude fat between the self pollinated seeds and naturally pollinated seeds reached the significant level. The regression equations for the contents of crude fat(y1 ) and glucosinolates( y2 ) in the naturally pollinated seeds and of crude fat( x1 ) and glucosinolates( x2 ) in self pollinated seeds were respectively determined to be y1 = 16.844 +0.614x1 and y2 = -0.620 + 1.017 x2. [ Conclusion] In Brassica napus breeding, crude fat in naturally pollinated seeds should be emphatically taken into account, meanwhile concurrently considering that in self pollinated seeds; while glucosinolates in both the self pollinated seeds and the naturally pollinated seeds must be simultaneously concerned.