Due to the high hardness and low fracture toughness of the single crystal silicon(SCS),it is highly susceptible to microscopic cracks and subsurface damage during processing.In this paper,we propose to adjust the mech...Due to the high hardness and low fracture toughness of the single crystal silicon(SCS),it is highly susceptible to microscopic cracks and subsurface damage during processing.In this paper,we propose to adjust the mechanical properties of SCS by cold plasma jet,and systematically investigate the influences of the plasma on material deformation and damage mechanisms by nanoscratch tests.The results indicate that the plasma can increase the critical normal force for the plastic-brittle(P-B)conversion of SCS.Compared with the ordinary nanoscratch test,the critical force for P-B conversion of plasma-assisted scratching at 1μm/s can increase from 43.6 to 66.4 mN.Increasing the scratching speed under ordinary conditions can enhance the plastic deformability of SCS to some extent,but its effect is not as effective as that of plasma;in addition,the increased scratching speed causes the shear bands(SBs)to lack time to propagate,so the quantity of SBs under plasma-assisted scratching at 10μm/s is reduced compared to 1μm/s.From subsurface damage topographies,the highly localized amorphous SBs cause the generation of subsurface cracks.The cold plasma can alleviate cracks on the scratched subsurface of SCS by introducing multiple SBs and stacking faults.This paper may provide a novel strategy for high-efficiency and low-damage ultra-precision machining of hard and brittle materials.展开更多
To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF_(2) single crystals,nanoscratch tests of MgF_(2) single crystals with different crystal planes a...To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF_(2) single crystals,nanoscratch tests of MgF_(2) single crystals with different crystal planes and directions were systematically performed,and surface morphologies of the scratched grooves under different conditions were analyzed.The experimental results indicated that anisotropy considerably affected the damage evolution in the machining process of MgF_(2) single crystals.A stress field model induced by the scratch was developed by considering the anisotropy,which indicated that during the loading process,median cracks induced by the tensile stress initiated and propagated at the front of the indenter.Lateral cracks induced by tensile stress initiated and propagated on the subsurface during the unloading process.In addition,surface radial cracks induced by the tensile stress were easily generated during the unloading process.The stress change led to the deflection of the propagation direction of lateral cracks.Therefore,the lateral cracks propagated to the workpiece surface,resulting in brittle removal in the form of chunk chips.The plastic deformation parameter indicated that the more the slip systems were activated,the more easily the plastic deformation occurred.The cleavage fracture parameter indicated that the cracks propagated along the activated cleavage planes,and the brittle chunk removal was owing to the subsurface cleavage cracks propagating to the crystal surface.Under the same processing parameters,the scratch of the(001)crystal plane along the[100]crystal-orientation was found to be the most conducive to achieving plastic machining of MgF_(2) single crystals.The theoretical results agreed well with the experimental results,which will not only enhance the understanding of the anisotropy dependence of the damage evolution and removal process during the machining of MgF_(2) crystals,but also provide a theoretical foundation for achieving the high-efficiency and low-damage processing of anisotropic single crystals.展开更多
Single-crystal silicon carbide(SiC)has been widely applied in the military and civil fields because of its excellent physical and chemical properties.However,as is typical in hard-to-machine materials,the good mechani...Single-crystal silicon carbide(SiC)has been widely applied in the military and civil fields because of its excellent physical and chemical properties.However,as is typical in hard-to-machine materials,the good mechanical properties result in surface defects and subsurface damage during precision or ultraprecision machining.In this study,single-and double-varied-load nanoscratch tests were systematically performed on single-crystal 4H-SiC using a nanoindenter system with a Berkovich indenter.The material removal characteristics and cracks under different planes,indenter directions,normal loading rates,and scratch intervals were analyzed using SEM,FIB,and a 3D profilometer,and the mechanisms of material removal and crack propagation were studied.The results showed that the Si-plane of the single-crystal 4H-SiC and edge forward indenter direction are most suitable for material removal and machining.The normal loading rate had little effect on the scratch depth,but a lower loading rate increased the ductile region and critical depth of transition.Additionally,the crack interaction and fluctuation of the depth-distance curves of the second scratch weakened with an increase in the scratch interval,the status of scratches and chips changed,and the comprehensive effects of the propagation and interaction of the three cracks resulted in material fractures and chip accumulation.The calculated and experimental values of the median crack depth also showed good consistency and relativity.Therefore,this study provides an important reference for the high-efficiency and precision machining of single-crystal SiC to ensure high accuracy and a long service life.展开更多
High-entropy alloys(HEAs)exhibit unique microstructural features and properties in nanoscale and atomic scale because of their multi-element alloy system.The nanoscratching behaviors of three HEAs with different phase...High-entropy alloys(HEAs)exhibit unique microstructural features and properties in nanoscale and atomic scale because of their multi-element alloy system.The nanoscratching behaviors of three HEAs with different phase constituents,relative to the microstructure and mechanical properties of the HEAs,were investigated.Three typical phase constituents were selected:face-centered cubic(FCC)structure,body-centered cubic(BCC)structure,and a dual-phase structure containing both FCC and BCC phases.Despite the fact that the FCC alloy has the highest ductility and strain hardening capability,it exhibited inferior scratch resistance due to the over-softening of hardness.Due to the brittle failure mode,the BCC alloy hardly exhibited desirable scratch resistance despite its highest hardness.By contrast,the nanostructured dual-phase alloy exhibited the best scratch resistance because of its good combination of strength and ductility,as well as the ductile failure mode.This research suggests that the HEA with structure comprising nanoscale hard and soft phases is desirable for nanoscratch resistance,and possesses appropriate hardness for industrial applications.展开更多
Molecular dynamic simulations are performed to study the nanoscratching behavior of polymers.The effects of scratching depth,scratching velocity and indenter/polymer interaction strength are investigated.It is found t...Molecular dynamic simulations are performed to study the nanoscratching behavior of polymers.The effects of scratching depth,scratching velocity and indenter/polymer interaction strength are investigated.It is found that polymer material in the scratching zone around the indenter can be removed in a ductile manner as the local temperature in the scratching zone exceeds glass transition temperature Tg.The recovery of polymer can be more significant when the temperature approaches or exceeds Tg.The tangential force,normal force and friction coefficient increase as the scratching depth increases.A larger scratching velocity leads to more material deformation and higher pile-up.The tangential force and normal force are larger for a larger scratching velocity whereas the friction coefficient is almost independent of the scratching velocities studied.It is also found that stronger indenter/polymer interaction strength results in a larger tangential force and friction coefficient.展开更多
Owing to the fine nano-laminated structure,the pearlitic multi-principal element alloy(PMPEA) exhibits excellent mechanical and tribological properties.However,the incomplete understanding of the size effect of its la...Owing to the fine nano-laminated structure,the pearlitic multi-principal element alloy(PMPEA) exhibits excellent mechanical and tribological properties.However,the incomplete understanding of the size effect of its lamella thickness and the unclear understanding of the plasticity-interface interaction mechanism limit further optimization of PMPEAs.In this study,the FeCoNi/Ni_3Ti interface-mediated plastic deformation behavior in PMPEA and the variation of mechanical and tribological properties with lamella thickness within the nanoscale range using molecular dynamics(MD) simulation were explored.The results indicate that the mechanical and tribological properties of the PMPEA with lamella thicknesses below 10 nm have a significant inverse size effect,i.e.,the smaller the lamella thickness,the weaker the properties.This is because the plastic carrier-interface interaction mechanism changes from a strengthening mechanism that hinders dislocations to a weakening mechanism that promotes dislocations with the decreases in the lamella thickness,and the weakening effect becomes more pronounced as the lamella thickness decreases and the number of interfaces increases.In particular,the deformation behavior of Ni_3Ti lamellae changes from crystal-like to amorphous-like with decreasing lamella.Moreover,in the sample with larger lamella thickness,the occurrence of hierarchical slips in the body-centered cubic(BCC) phase due to the multiprincipal elements effect can better alleviate the stress concentration caused by the dislocation accumulation at the interface,so that the phase interface exhibits outstanding load-bearing effects.And the dislocation pattern in BCC phase shows a firm high-density cell,which makes the substrate exhibit a stable tribological response.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52475430)the Fundamental Research Funds for the Central Universities(Grant No.DUT23YG118).
文摘Due to the high hardness and low fracture toughness of the single crystal silicon(SCS),it is highly susceptible to microscopic cracks and subsurface damage during processing.In this paper,we propose to adjust the mechanical properties of SCS by cold plasma jet,and systematically investigate the influences of the plasma on material deformation and damage mechanisms by nanoscratch tests.The results indicate that the plasma can increase the critical normal force for the plastic-brittle(P-B)conversion of SCS.Compared with the ordinary nanoscratch test,the critical force for P-B conversion of plasma-assisted scratching at 1μm/s can increase from 43.6 to 66.4 mN.Increasing the scratching speed under ordinary conditions can enhance the plastic deformability of SCS to some extent,but its effect is not as effective as that of plasma;in addition,the increased scratching speed causes the shear bands(SBs)to lack time to propagate,so the quantity of SBs under plasma-assisted scratching at 10μm/s is reduced compared to 1μm/s.From subsurface damage topographies,the highly localized amorphous SBs cause the generation of subsurface cracks.The cold plasma can alleviate cracks on the scratched subsurface of SCS by introducing multiple SBs and stacking faults.This paper may provide a novel strategy for high-efficiency and low-damage ultra-precision machining of hard and brittle materials.
基金supported by the National Natural Science Foundation of China (52005134&51975154)China Postdoctoral Science Foundation (2022T150163, 2020M670901)+4 种基金Self-Planned Task (No. SKLRS202214B) of State Key Laboratory of Robotics and System (HIT)Heilongjiang Postdoctoral Fund (LBH-Z20016)Shenzhen Science and Technology Program (GJHZ20210705142804012)Fundamental Research Funds for the Central Universities(FRFCU5710051122)Open Fund of ZJUT Xinchang Research Institute
文摘To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF_(2) single crystals,nanoscratch tests of MgF_(2) single crystals with different crystal planes and directions were systematically performed,and surface morphologies of the scratched grooves under different conditions were analyzed.The experimental results indicated that anisotropy considerably affected the damage evolution in the machining process of MgF_(2) single crystals.A stress field model induced by the scratch was developed by considering the anisotropy,which indicated that during the loading process,median cracks induced by the tensile stress initiated and propagated at the front of the indenter.Lateral cracks induced by tensile stress initiated and propagated on the subsurface during the unloading process.In addition,surface radial cracks induced by the tensile stress were easily generated during the unloading process.The stress change led to the deflection of the propagation direction of lateral cracks.Therefore,the lateral cracks propagated to the workpiece surface,resulting in brittle removal in the form of chunk chips.The plastic deformation parameter indicated that the more the slip systems were activated,the more easily the plastic deformation occurred.The cleavage fracture parameter indicated that the cracks propagated along the activated cleavage planes,and the brittle chunk removal was owing to the subsurface cleavage cracks propagating to the crystal surface.Under the same processing parameters,the scratch of the(001)crystal plane along the[100]crystal-orientation was found to be the most conducive to achieving plastic machining of MgF_(2) single crystals.The theoretical results agreed well with the experimental results,which will not only enhance the understanding of the anisotropy dependence of the damage evolution and removal process during the machining of MgF_(2) crystals,but also provide a theoretical foundation for achieving the high-efficiency and low-damage processing of anisotropic single crystals.
基金Supported by National Natural Science Foundation of China(Grant No.51405034)Changsha Municipal Natural Science Foundation of China(Grant No.kq2202200)Hunan Provincial High-tech Industry Science and Technology Innovation Leading Program of China(Grant No.2022GK4027).
文摘Single-crystal silicon carbide(SiC)has been widely applied in the military and civil fields because of its excellent physical and chemical properties.However,as is typical in hard-to-machine materials,the good mechanical properties result in surface defects and subsurface damage during precision or ultraprecision machining.In this study,single-and double-varied-load nanoscratch tests were systematically performed on single-crystal 4H-SiC using a nanoindenter system with a Berkovich indenter.The material removal characteristics and cracks under different planes,indenter directions,normal loading rates,and scratch intervals were analyzed using SEM,FIB,and a 3D profilometer,and the mechanisms of material removal and crack propagation were studied.The results showed that the Si-plane of the single-crystal 4H-SiC and edge forward indenter direction are most suitable for material removal and machining.The normal loading rate had little effect on the scratch depth,but a lower loading rate increased the ductile region and critical depth of transition.Additionally,the crack interaction and fluctuation of the depth-distance curves of the second scratch weakened with an increase in the scratch interval,the status of scratches and chips changed,and the comprehensive effects of the propagation and interaction of the three cracks resulted in material fractures and chip accumulation.The calculated and experimental values of the median crack depth also showed good consistency and relativity.Therefore,this study provides an important reference for the high-efficiency and precision machining of single-crystal SiC to ensure high accuracy and a long service life.
基金The authors are grateful for the financial supports from the Defense Industrial Technology Development Program(No.JCKY2018407C008)the National Natural Science Foundation of China(NSFC)(Grant Nos.51304061 and 51474092)the NCST Science Fund for Distinguished Young Scholars(No.JQ201702).
文摘High-entropy alloys(HEAs)exhibit unique microstructural features and properties in nanoscale and atomic scale because of their multi-element alloy system.The nanoscratching behaviors of three HEAs with different phase constituents,relative to the microstructure and mechanical properties of the HEAs,were investigated.Three typical phase constituents were selected:face-centered cubic(FCC)structure,body-centered cubic(BCC)structure,and a dual-phase structure containing both FCC and BCC phases.Despite the fact that the FCC alloy has the highest ductility and strain hardening capability,it exhibited inferior scratch resistance due to the over-softening of hardness.Due to the brittle failure mode,the BCC alloy hardly exhibited desirable scratch resistance despite its highest hardness.By contrast,the nanostructured dual-phase alloy exhibited the best scratch resistance because of its good combination of strength and ductility,as well as the ductile failure mode.This research suggests that the HEA with structure comprising nanoscale hard and soft phases is desirable for nanoscratch resistance,and possesses appropriate hardness for industrial applications.
基金supported by the National Natural Science Foundation of China (Grant No.90923038)the National Basic Research Program of China (Grant No.2011CB706703)+1 种基金"111"project (Grant No.B07014)by the State Administration of Foreign Experts Affairs and the Ministry of Education of China
文摘Molecular dynamic simulations are performed to study the nanoscratching behavior of polymers.The effects of scratching depth,scratching velocity and indenter/polymer interaction strength are investigated.It is found that polymer material in the scratching zone around the indenter can be removed in a ductile manner as the local temperature in the scratching zone exceeds glass transition temperature Tg.The recovery of polymer can be more significant when the temperature approaches or exceeds Tg.The tangential force,normal force and friction coefficient increase as the scratching depth increases.A larger scratching velocity leads to more material deformation and higher pile-up.The tangential force and normal force are larger for a larger scratching velocity whereas the friction coefficient is almost independent of the scratching velocities studied.It is also found that stronger indenter/polymer interaction strength results in a larger tangential force and friction coefficient.
基金financially supported by the Natural Science Foundation of China (Nos.52361013 and 52001082)Guizhou Provincial Basic Research Program (Natural Science) (No. ZK [2022] general 137)+1 种基金Talent Project of Guizhou University and Natural Science Foundation of Guizhou University (No.202201)Open Foundation of Key Laboratory of Advanced Manufacturing Technology Foundation (No.GZUAMT2022KF[01])。
文摘Owing to the fine nano-laminated structure,the pearlitic multi-principal element alloy(PMPEA) exhibits excellent mechanical and tribological properties.However,the incomplete understanding of the size effect of its lamella thickness and the unclear understanding of the plasticity-interface interaction mechanism limit further optimization of PMPEAs.In this study,the FeCoNi/Ni_3Ti interface-mediated plastic deformation behavior in PMPEA and the variation of mechanical and tribological properties with lamella thickness within the nanoscale range using molecular dynamics(MD) simulation were explored.The results indicate that the mechanical and tribological properties of the PMPEA with lamella thicknesses below 10 nm have a significant inverse size effect,i.e.,the smaller the lamella thickness,the weaker the properties.This is because the plastic carrier-interface interaction mechanism changes from a strengthening mechanism that hinders dislocations to a weakening mechanism that promotes dislocations with the decreases in the lamella thickness,and the weakening effect becomes more pronounced as the lamella thickness decreases and the number of interfaces increases.In particular,the deformation behavior of Ni_3Ti lamellae changes from crystal-like to amorphous-like with decreasing lamella.Moreover,in the sample with larger lamella thickness,the occurrence of hierarchical slips in the body-centered cubic(BCC) phase due to the multiprincipal elements effect can better alleviate the stress concentration caused by the dislocation accumulation at the interface,so that the phase interface exhibits outstanding load-bearing effects.And the dislocation pattern in BCC phase shows a firm high-density cell,which makes the substrate exhibit a stable tribological response.