期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
Graphene Nanoribbons Enhancing the Electronic Conductivity and Ionic Diffusion of Graphene Electrodes for High-Performance Microsupercapacitors
1
作者 Yan Zhang Huandi Zhang +7 位作者 Xiaoxiao Wang Xiaowei Shi Zehua Zhao Yaling Wang Jiamei Liu Cheng Tang Guolong Wang Lei Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期285-294,共10页
The electrochemical performance of microsupercapacitors with graphene electrodes is reduced by the issue of graphene sheets aggregation,which limits electrolyte ions penetration into electrode.Increasing the space bet... The electrochemical performance of microsupercapacitors with graphene electrodes is reduced by the issue of graphene sheets aggregation,which limits electrolyte ions penetration into electrode.Increasing the space between graphene sheets in electrodes facilitates the electrolyte ions penetration,but sacrifices its electronic conductivity which also influences the charge storage ability.The challenging task is to improve the electrodes’electronic conductivity and ionic diffusion simultaneously,boosting the device’s electrochemical performance.Herein,we experimentally realize the enhancement of both electronic conductivity and ionic diffusion from 2D graphene nanoribbons assisted graphene electrode with porous layer-uponlayer structure,which is tailored by graphene nanoribbons and self-sacrificial templates ethyl cellulose.The designed electrode-based device delivers a high areal capacitance of 71 mF cm^(-2)and areal energy density of 9.83μWh cm^(-2),promising rate performance,outstanding cycling stability with 97%capacitance retention after 20000 cycles,and good mechanical properties.The strategy paves the way for fabricating high-performance graphene-based MSCs. 展开更多
关键词 areal energy density GRAPHENE graphene nanoribbons microsupercapacitors structure engineering
在线阅读 下载PDF
Existence of long-range magnetic order in Heisenberg spin nanoribbons with edge modification
2
作者 Da-cheng Ma Ling-yi Cui +3 位作者 Chu-xiao Sun Xiao-dan Chi Zheng-Nan XianYu An Du 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第7期134-144,共11页
Long-range magnetic order appears on a side decorated Heisenberg spin nanoribbon at nonzero temperature,although no spontaneous magnetization exists in a one-or two-dimensional isotropic Heisenberg model at any nonzer... Long-range magnetic order appears on a side decorated Heisenberg spin nanoribbon at nonzero temperature,although no spontaneous magnetization exists in a one-or two-dimensional isotropic Heisenberg model at any nonzero temperature according to the Mermin-Wagner theorem.By use of the spin Green's function method,we calculated the magnetizations of Heisenberg nanoribbons decorated by side spins with single-ion anisotropy and found that the system exhibits a nonzero transition temperature,whether the decorated edge spins of the system link together or separate from each other.When the width of the nanoribbon achieves infinite limit,the transition temperatures of the system tend to the same finite constant eventually whether one edge or both edges are decorated by side spins in the nanoribbon.The results reveal that the magnetism of a low-dimensional spin system is different from that of a threedimensional spin system.When the single-ion anisotropy of edge spins in a Heisenberg spin nanoribbon can be modulated by an electric field experimentally,various useful long-range magnetic orders of the system can be obtained.This work can provide a detailed theoretical basis for designing and fabricating next-generation low-dimensional magnetic random-access memory. 展开更多
关键词 NANORIBBON magnetic anisotropy long-range magnetic order Heisenberg model transition temperature
原文传递
Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction 被引量:7
3
作者 Jie Wang Ze-Xing Wu +4 位作者 Li-Li Han Yuan-Yang Liu Jun-Po Guo Huolin L.Xin De-Li Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第4期597-601,共5页
In the present work, we report nitrogen and phosphorus co-doped 3-D structured carbon nanotube intercalated graphene nanoribbon composite. The graphene nanoribbons are prepared via partial exfoliation of multi-walled ... In the present work, we report nitrogen and phosphorus co-doped 3-D structured carbon nanotube intercalated graphene nanoribbon composite. The graphene nanoribbons are prepared via partial exfoliation of multi-walled carbon nanotubes. In the graphene nanoribbons/CNTs composite, carbon nanotubes play a role of skeleton and support the exfoliated graphene nanoribbons to form the stereo structure. After high temperature heat-treatment with ammonium dihydrogen phosphate, the unique structure reserves both the properties of carbon nanotube and graphene, exhibiting excellent catalytic performance for the ORR with excellent onset and half-wave potential, which is similar to commercial Pt/C electrocatalysts. 展开更多
关键词 Graphene nanoribbons Carbon nanotube DOPING ELECTROCATALYST Oxygen reduction reaction
原文传递
Effect of Graphene Nanoribbons (TexasPEG) on locomotor function recovery in a rat model of lumbar spinal cord transection 被引量:2
4
作者 C-Yoon Kim William K. A. Sikkema +7 位作者 Jin Kim Jeong Ah Kim James Walter Raymond Dieter Hyung-Min Chung Andrea Mana James M. Tour Sergio Canavero 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第8期1440-1446,共7页
A sharply transected spinal cord has been shown to be fused under the accelerating influence of membrane fusogens such as polyethylene glycol (PEG) (GEMINI protocol). Previous work provided evidence that this is i... A sharply transected spinal cord has been shown to be fused under the accelerating influence of membrane fusogens such as polyethylene glycol (PEG) (GEMINI protocol). Previous work provided evidence that this is in fact possible. Other fusogens might improve current results. In this study, we aimed to assess the effects of PEGylated graphene nanoribons (PEG-GNR, and called "TexasPEG" when prepared as lwt% dispersion in PEG600) versus placebo (saline) on locomotor function recovery and cellular level in a rat model of spinal cord transection at lumbar segment 1 (L1) level. In vivo and in vitro experiments (n -- 10 per experiment) were designed. In the in vivo experiment, all rats were submitted to full spinal cord transection at L1 level. Five weeks later, behavioral assessment was performed using the Basso Beattie Bresnahan (BBB) locomotor rating scale. Immunohistochemical staining with neuron marker neurofilament 200 (NF200) antibody and astrocyt- ic scar marker glial fibrillary acidic protein (GFAP) was also performed in the injured spinal cord. In the in vitro experiment, the effects of TexasPEG application for 72 hours on the neurite outgrowth of SH-SYSY cells were observed under the inverted microscope. Results of both in vivo and in vitro experiments suggest that TexasPEG reduces the formation of glial scars, promotes the regeneration of neurites, and thereby contributes to the recovery of locomotor function of a rat model of spinal cord transfection. 展开更多
关键词 nerve regeneration spinal cord transfection spinal cord fusion GEMINI TexasPEG graphene nanoribbons
暂未订购
Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons 被引量:2
5
作者 赵尚骞 吕燕 +2 位作者 吕文刚 梁文杰 王恩哥 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期507-513,共7页
We present a study of electronic properties of zigzag graphene nanoribbons (ZGNRs) substitutionally doped with nitrogen atoms at a single edge by first principle calculations. We find that the two edge states near t... We present a study of electronic properties of zigzag graphene nanoribbons (ZGNRs) substitutionally doped with nitrogen atoms at a single edge by first principle calculations. We find that the two edge states near the Fermi level sepa- rate due to the asymmetric nitrogen-doping. The ground states of these systems become ferromagnetic because the local magnetic moments along the undoped edges remain and those along the doped edges are suppressed. By controlling the charge-doping level, the magnetic moments of the whole ribbons are modulated. Proper charge doping leads to interest- ing half-metallic and single-edge conducting ribbons which would be helpful for designing graphene-nanoribbon-based spintronic devices in the future. 展开更多
关键词 graphene nanoribbons charge doping SPIN-POLARIZATION spatial localization
原文传递
In-situ growth of hybrid NaTi8O13/NaTiO2 nanoribbons on layered MXene Ti3C2 as a competitive anode for high-performance sodium-ion batteries 被引量:2
6
作者 Xuan Sun Ke Tan +3 位作者 Yang Liu Jinyang Zhang Linrui Hou Changzhou Yuan 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第9期2254-2258,共5页
In the work,we successfully explore a two-step hydrothermal method for scalable synthesis of the hybrid sodium titanate(NaTi8O13/NaTiO2) nanoribbons well in-situ formed on the multi-layered MXene Ti3C2(designed as NTO... In the work,we successfully explore a two-step hydrothermal method for scalable synthesis of the hybrid sodium titanate(NaTi8O13/NaTiO2) nanoribbons well in-situ formed on the multi-layered MXene Ti3C2(designed as NTO/Ti3C2).Benefiting from the inherent structural and componential superiorities,the resulted NTO/Ti3C2 composite exhibits long-duration cycling stability and superior rate behaviors when evaluated as a hybrid anode for advanced SIBs,which delivers a reversible and stable capacity of^82 mAh/g even after 1900 cycles at 2000 mA/g for SIBs. 展开更多
关键词 Sodium titanate nanoribbons Layered MXene Ti3C2 In-situ growth Anodes Sodium ion batteries
原文传递
Negative differential resistance behaviour in N-doped crossed graphene nanoribbons 被引量:1
7
作者 陈灵娜 马松山 +3 位作者 欧阳方平 伍小赞 肖金 徐慧 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期531-535,共5页
By using first-principles calculations and nonequilibrium Green's function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties o... By using first-principles calculations and nonequilibrium Green's function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties of molecular junctions can be modulated by doped atoms. Negative differential resistance (NDR) behaviour can be observed in a certain bias region, when crossed graphene nanoribbons are doped with nitrogen atoms at the shoulder, but it cannot be observed for pristine crossed graphene nanoribbons at low biases. A mechanism for the negative differential resistance behaviour is suggested. 展开更多
关键词 transport properties negative differential resistance FIRST-PRINCIPLES crossed graphene nanoribbons
原文传递
Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons 被引量:1
8
作者 Caiyun Wang Shuang Lu +1 位作者 Xiaodong Yu Haipeng Li 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期522-526,共5页
We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs)with molecular dynamics simulations.The increase in both chain length ... We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs)with molecular dynamics simulations.The increase in both chain length and concentration of alkyl groups caused remarkable reduction of phonon thermal conductivity in functionalized ZGNRs.Phonon spectra analysis showed that functionalization of ZGNR with alkyl functional groups induced phonon–structural defect scattering,thus leading to the reduction of phonon thermal conductivity of ZGNR.Our study showed that surface functionalization is an effective routine to tune the phonon thermal conductivity of GNRs,which is useful in graphene thermal-related applications. 展开更多
关键词 graphene nanoribbons(GNRs) thermal conductivity phonon spectrum surface functionalization molecular dynamics simulations
原文传递
Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111) 被引量:1
9
作者 Huan Yang Yixuan Gao +7 位作者 Wenhui Niu Xiao Chang Li Huang Junzhi Liu Yiyong Mai Xinliang Feng Shixuan Du Hong-Jun Gao 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期484-488,共5页
The on-surface synthesis from predesigned organic precursors can yield graphene nanoribbons(GNRs)with atomically precise widths,edge terminations and dopants,which facilitate the tunning of their electronic structures... The on-surface synthesis from predesigned organic precursors can yield graphene nanoribbons(GNRs)with atomically precise widths,edge terminations and dopants,which facilitate the tunning of their electronic structures.Here,we report the synthesis of novel sulfur-doped cove-edged GNRs(S-CGNRs)on Au(111)from a specifically designed precursor containing thiophene rings.Scanning tunneling microscopy and non-contact atomic force microscopy measurements elucidate the formation of S-CGNRs through subsequent polymerization and cyclodehydrogenation,which further result in crosslinked branched structures.Scanning tunneling spectroscopy results reveal the conduction band minimum of the S-CGNR locates at 1.2 e V.First-principles calculations show that the S-CGNR possesses an energy bandgap of 1.17 e V,which is evidently smaller than that of an undoped cove-edged GNR(1.7 e V),suggesting effective tuning of the bandgap by introducing sulfur atoms.Further increasing the coverage of precursors close to a monolayer results in the formation of linear-shaped S-CGNRs.The fabrication of S-CGNRs provides one more candidate in the GNR toolbox and promotes the future applications of heteroatom-doped graphene nanostructures. 展开更多
关键词 on-surface synthesis sulfur-doped cove-edged graphene nanoribbons scanning tunneling microscopy non-contact atomic force microscopy
原文传递
The complex band structure for armchair graphene nanoribbons 被引量:1
10
作者 张留军 夏同生 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期548-554,共7页
Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well wi... Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N = 3M- 1. The band gap is almost unchanged for N =3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nanoribbons, and is also classified into three classes. 展开更多
关键词 armchair graphene nanoribbons complex band structure edge bond relaxation third nearest neighbour interaction
原文传递
Strain effect on transport properties of hexagonal boron—nitride nanoribbons 被引量:1
11
作者 陈风 陈元平 +1 位作者 张迷 钟建新 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期489-494,共6页
The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron-nitride nanoribbon st... The transport properties of hexagonal boron-nitride nanoribbons under the uniaxial strain are investigated by the Green's function method. We find that the transport properties of armchair boron-nitride nanoribbon strongly depend on the strain. In particular, the features of the conductance steps such as position and width are significantly changed by strain. As a strong tensile strain is exerted on the nanoribbon, the highest conductance step disappears and subsequently a dip emerges instead. The energy band structure and the local current density of armchair boron nitride nanoribbon under strain are calculated and analysed in detail to explain these characteristics. In addition, the effect of strain on the conductance of zigzag boron-nitride nanoribbon is weaker than that of armchair boron nitride nanoribbon. 展开更多
关键词 transport properties hexagonal boron-nitride nanoribbons Green's function
原文传递
Edge-Dependent Electronic and Magnetic Characteristics of Freestanding β_(12)-Borophene Nanoribbons 被引量:1
12
作者 Sahar Izadi Vishkayi Meysam Bagheri Tagani 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期124-136,共13页
This work presents an investigation of nanoribbons cut from β_(12)-borophene sheets by applying the density functional theory. In particular, the electronic and magnetic properties of borophene nanoribbons(BNR) are s... This work presents an investigation of nanoribbons cut from β_(12)-borophene sheets by applying the density functional theory. In particular, the electronic and magnetic properties of borophene nanoribbons(BNR) are studied. It is found that all the ribbons considered in this work behave as metals, which is in good agreement with the recent experimental results. β_(12)-BNR has significant diversity due to the existence of five boron atoms in a unit cell of the sheet. The magnetic properties of the ribbons are strongly dependent on the cutting direction and edge profile. It is interesting that a ribbon with a specific width can behave as a normal or a ferromagnetic metal with magnetization at just one edge or two edges. Spin anisotropy is observed in some ribbons, and the magnetic moment is not found to be the same in both edges in an antiferromagnetic configuration. This effect stems from the edge asymmetry of the ribbons and results in the breaking of spin degeneracy in the band structure. Our findings show that β_(12) BNRs are potential candidates for next-generation spintronic devices. 展开更多
关键词 Borophene nanoribbons Electronic and magnetic properties Density functional theory
在线阅读 下载PDF
Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons 被引量:1
13
作者 Yang Liu Cai-Juan Xia +3 位作者 Bo-Qun Zhang Ting-Ting Zhang Yan Cui Zhen-Yang Hu 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第6期62-65,共4页
The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function... The electronic transport properties of a molecular junction based on doping tailoring armchair-type graphene nanoribbons(AGNRs)with different widths are investigated by applying the non-equilibrium Green's function formalism combined with first-principles density functional theory.The calculated results show that the width and doping play significant roles in the electronic transport properties of the molecular junction.A higher current can be obtained for the molecular junctions with the tailoring AGNRs with W=11.Furthermore,the current of boron-doped tailoring AGNRs with widths W=7 is nearly four times larger than that of the undoped one,which can be potentially useful for the design of high performance electronic devices. 展开更多
关键词 Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene nanoribbons
原文传递
Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons
14
作者 Yu-Zhuo LV Peng ZHAO 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第1期48-51,共4页
Using density functional theory combined with non-equilibrium Green's function method, we investigate the spin caloritronic transport properties of tree-saw graphene nanoribbons. These systems have stable ferromag... Using density functional theory combined with non-equilibrium Green's function method, we investigate the spin caloritronic transport properties of tree-saw graphene nanoribbons. These systems have stable ferromagnetic ground states with a high Curie temperature that is far above room temperature and exhibit obvious spin-Seebeck effect. Moreover, thermal colossal magnetoresistance up to 1020% can be achieved by the external magnetic field modulation. The underlying mechanism is analyzed by spin-resolved transmission spectra, current spectra and band structures. 展开更多
关键词 SPIN Caloritronic TRANSPORT Tree-Saw GRAPHENE nanoribbons Density functional theory
原文传递
Band engineering of B_2H_2 nanoribbons
15
作者 Bao Lei Yu-Yang Zhang Shi-Xuan Du 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第4期305-309,共5页
Freestanding honeycomb borophene is unstable due to the electron-deficiency of boron atoms. B_2H_2 monolayer, a typical borophene hydride, has been predicted to be structurally stable and attracts great attention. Her... Freestanding honeycomb borophene is unstable due to the electron-deficiency of boron atoms. B_2H_2 monolayer, a typical borophene hydride, has been predicted to be structurally stable and attracts great attention. Here, we investigate the electronic structures of B_2H_2 nanoribbons. Based on first-principles calculations, we have found that all narrow armchair nanoribbons with and without mirror symmetry(ANR-s and ANR-as, respectively) are semiconducting. The energy gap has a relation with the width of the ribbon. When the ribbon is getting wider, the gap disappears. The zigzag ribbons without mirror symmetry(ZNR-as) have the same trend. But the zigzag ribbons with mirror symmetry(ZNR-s) are always metallic. We have also found that the metallic ANR-as and ZNR-s can be switched to semiconducting by applying a tensile strain along the nanoribbon. A gap of 1.10 eV is opened under 16% strain for the 11.0-■ ANR-as. Structural stability under such a large strain has also been confirmed. The flexible band tunability of B_2H_2 nanoribbon increases its possibility of potential applications in nanodevices. 展开更多
关键词 borophene HYDRIDE nanoribbons BAND ENGINEERING FIRST-PRINCIPLES CALCULATIONS strain
原文传递
Sc-Decorated WS_2 Nanoribbons as Hydrogen Storage Media
16
作者 徐斌 王玉生 +3 位作者 宋纳红 张静 李梦 易林 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第1期104-108,共5页
The hydrogen storage behavior of So-decorated WS2 monolayer and WS2 nanoribbons is systematically studied by using first principles calculations based on the density functional theory. The present results indicate tha... The hydrogen storage behavior of So-decorated WS2 monolayer and WS2 nanoribbons is systematically studied by using first principles calculations based on the density functional theory. The present results indicate that an Sedecorated WS2 monolayer is not suitable for storing hydrogen due to the weak interaction between the monolayer WS2 sheet and the Sc atoms. It is found that both the hybridization meeh^nism and the Coulomb attraction make the Sc atoms stably adsorb on the edges of WS2 nanoribbons without clustering. The 2Sc/WS2NRs system can adsorb at most eight H.2 molecules with average adsorption energy of 0.20 eV/H2. The results show that the desorption of H2 is possible by lowering the pressure or by increasing the temperature. 展开更多
关键词 WS on NRS SC it IS Sc-Decorated WS2 nanoribbons as Hydrogen Storage Media of
原文传递
Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons
17
作者 Baoyue Li Yifeng Cao +4 位作者 Lin Xu Guang Yang Zhi Ma Miao Ye Tianxing Ma 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第6期83-87,共5页
It has been demonstrated that the zigzag honeycomb nanoribbons exhibit an intriguing edge magnetism. Here the effect of the anisotropy on the edge magnetism in zigzag honeycomb nanoribbons is investigated using two ki... It has been demonstrated that the zigzag honeycomb nanoribbons exhibit an intriguing edge magnetism. Here the effect of the anisotropy on the edge magnetism in zigzag honeycomb nanoribbons is investigated using two kinds of large-scale quantum Monte Carlo simulations. The anisotropy in zigzag honeycomb nanoribbons is characterized by the ratios of nearest-neighbor hopping integrals t_1 in one direction and t_2 in another direction. Considering the electron-electron correlation, it is shown that the edge ferromagnetism could be enhanced greatly as t_2/|t_1|increases from 1 to 3, which not only presents an avenue for the control of this magnetism but is also useful for exploring further novel magnetism in new nano-scale materials. 展开更多
关键词 ANISOTROPY Engineering EDGE MAGNETISM ZIGZAG HONEYCOMB nanoribbons EDGE MAGNETISM
原文传递
First principle study of edge topological defect-modulated electronic and magnetic properties in zigzag graphene nanoribbons
18
作者 黄露婷 陈铮 +1 位作者 王永欣 卢艳丽 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期169-174,共6页
Zigzag graphene nanoribbon (ZGNR) is a promising candidate for next-generation spintronic devices. Development of the field requires potential systems with variable and adjustable electromagnetic properties. Here we... Zigzag graphene nanoribbon (ZGNR) is a promising candidate for next-generation spintronic devices. Development of the field requires potential systems with variable and adjustable electromagnetic properties. Here we show a detailed investigation of ZGNR decorated with edge topological defects (ED-ZGNR) synthesized in laboratory by Ruffieux in 2015 [Pascal Ruffieux, Shiyong Wang, Bo Yang, et al. 2015 Nature 531 489]. The pristine ED-ZGNR in the ground state is an antiferromagnetic semiconductor, and the acquired band structure is significantly changed compared with that of perfect ZGNR. After doping heteroatoms on the edge, the breaking of degeneration of band structure makes the doped ribbon a half-semi-metal, and nonzero magnetic moments are induced. Our results indicate the tunable electronic and magnetic properties of ZGNR by deriving unique edge state from topological defect, which opens a new route to practical nano devices based on ZGNR. 展开更多
关键词 graphene nanoribbons topological defect SPIN EDGE
原文传递
Nitrogen and boron co-doped graphene nanoribbons as peroxidase-mimicking nanozymes for enhanced biosensing
19
作者 Siyu Luo Meng Sha +6 位作者 Fei Tian Xialian Li Lijie Fu Yingqiu Gu Lu-Lu Qu Guo-Hai Yang Chengzhou Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第1期344-348,共5页
The rational design of nanozymes with superior activities is essential for improving bioassay performances.Herein,nitrogen and boron co-doped graphene nanoribbons(NB-GNRs)are prepared by a hydrothermal method using ur... The rational design of nanozymes with superior activities is essential for improving bioassay performances.Herein,nitrogen and boron co-doped graphene nanoribbons(NB-GNRs)are prepared by a hydrothermal method using urea as the nitrogen source and boric acid as the boron source,respectively.The introduction of co-doped and edge structures provides high defects and active sites.The resultant NB-GNRs nanozymes show superior peroxidase-like activities to nitrogen-doped and boron-doped counterparts due to the synergistic effects.By taking advantage of their peroxidase-like activities,NB-GNRs are used for the first time to develop enzyme-linked immunosorbent assay for the detection of interleukin-6.The biosensors exhibit a high performance with a linear range from 0.001 ng/mL to 1000 ng/mL and a detection limit of 0.3 pg/mL.Due to their low cost and high stability,the proposed nanomaterials show great promise in biocatalysis,immunoassay development and environmental monitoring. 展开更多
关键词 Graphene nanoribbons Heteroatom doping Nanozymes BIOSENSING INTERLEUKIN-6
原文传递
Spin Caloritronic Transport of (2×1) Reconstructed Zigzag MoS_2 Nanoribbons
20
作者 吕钰卓 赵朋 刘德胜 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期74-77,共4页
Using first-principles density functional theory combined with nonequilibrium Green's function method, we inves-tigate the spin caloritronic transport properties of (2×1) reconstructed zigzag MoS2 nanoribbons.... Using first-principles density functional theory combined with nonequilibrium Green's function method, we inves-tigate the spin caloritronic transport properties of (2×1) reconstructed zigzag MoS2 nanoribbons. These systems can exhibit obvious spin Seebeck effect. Furthermore, by tuning the external magnetic field, a thermal giant magnetoresistance up to 10^4% can be achieved. These spin caloritronic transport properties are understood in terms of spin-resolved transmission spectra, band structures, and the symmetry analyses of energy bands around the Fermi level. 展开更多
关键词 Spin Caloritronic Transport of AP MC Reconstructed Zigzag MoS2 nanoribbons SEEBECK
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部